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i 4, TRANSITION AMPLITUDES
The previous chapter has discussed the asymptotic behavior
of the outgoing Green's function G(+) (’5;2/') at large r. This
éhapter examines the limit of ‘Pi(+) (5) as r > ®, and interprets
the reaction rates inferred therefrom, concentrating primarily on
directions v corresponding to three-body elastic scattering, i.e.,
on directions v for which no T, remains finite as r +» », In

B
+

‘this conmection suppose the scattered part <I>i(+) of ‘Pi really

were everywhere outgoing at infinity in the laboratory system.
Then, according to arguments which have been given elsewhere(z) s

in the laboratory system the outward flow of probability current

(associated with @i(+)) across the sphere at infinity should be

F -t (ds wW[eP 2]

A

where E is defined as in (45a); and where the surface element dg
is perpendicular to v, and has magnitude dS = rsd}') given by Eqs.
(89). As was mentioned in Chapter 1, in the time-independent
configuration space formulation of Ascattering theory, reaction
coefficients are computed from the probability current at infinity.
Thus, to be sure that computation of the three-body elastic
scattering rate does not involve divergent expressions, 1t is

necessary that along most directions Y,

¥ -+

8 (117b)
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or even smaller. If Lgl decreases more slowly than 1/r8, the integrand

in the surface integral (117a) at infinity is not bounded. Correspond-

' ingly, the integral for;§ diverges as r + », unless (at fixed large r)

the angular integrations over q: vanish; of course, the integrations

i(+) really were evemywhere

over dv in (117a) could not vanish if ¢
outgoing at infinity, since then (ih)_%g§°ﬂ, always would have
the same sign.

Eq. (117b) would hold if @i(+)(E;E) behaved asymptotically
at large r like GF(+)Q££5';E) [recall Eqs. (90)1], i.e., if
@i(+)€£;E) at 1arge‘£ repre§ented three particles moving freely
(as if under no forces) outwards from the laboratory system origin
and from each other. But Eq. (5$b) shows the center of mass

+)
i

motion associated with ¢ is that of a plane wave, not an

outgoing spherical wave; correspondingly, [}&| actually decreases

no more rapidly than rﬂs, and the integrand in (117a) does turn out to

be divergent Fee subsection 4,1.1]. For three-particle collisions

involving two incident bodies only, as, e.g., reactions (17b) and (17c¢),

this divergence of (117a) is not & cause for serious concern, however,

because(z): (1) the divergence is interpretable physically, and
(more importantly (ii) manipulations with divergent quantities
can be wholly avoided by computing the center of mass frame

probability current flow

T _ T gl awx T
F - (a5 wleP &)

1h

PRSI
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In particular, in the cited two-body reactions (17b) and (17¢),
when‘2’+ ® along directions V corresponding to breakup into

three particles, Ei(+)(f;ﬁ) behaves(ll) 1like EF(+)(£};'EE), and
' (e %4

wlaz]| ~

!
'Tv 1) (118b)

which suffices to keep finite the total scattered current flow
across the sphere at infinite E, whose surface element dS is
=5
of order r .
On the other hand, for collisions indmced by the incident
wave (21a), wherein all three particles are initially free,
) (+)(E'E) does not behave asymptotically like G C+)(;'E"E)-
i ~’ v F w2707
correspondingly, Eq. (118b) does not hold and use of (118a)
generally does not avoid infinite probability current flows. 1In

fact, Eqs. (61), (68) and (72) make it obvious that 6i(+)

+) = ) =+
12( 5 @23 . ¢31( ) possessing

generated

by (20) contains contributions o

plane wave factors. For such terms, (118b) fails Fee subgection

4.1.2} because whereas lim ﬁF(+)(§;£';E) aseg + along'g is of order

= =53/2 [recall Eqs. (90) and (92)], the corresponding limit of

s )= = = =lay=-1 ' -
’ue gs,E) is of orderfguB r along directionsrg for which

r ., becomes infinite with r. These considerations indicate that at the

af :
very least 512(+), 323(+) and 63l(+) must be subtracted from & )

i
before there can
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be any hope of computing—via £q. (118a), but now using Eis(+)

= (+)

from Eq. (62) in place of @i —non-diverging center of mass

frame scattered current flows.

Unfortunately (as particularly subsection 4.1.3 will show), use

5 80 )
i

sources of divergentz;. To put it differently, it will be shown

of instead of 51 in {118a) still does not eliminate all

in subsection 4.1.3 that—for short range forces and directions ;L
corresponding to three-body elastic scattering——@is(+)(£;ﬁ) still
is not identical with that part of 51(+)<£;E) which as‘i,+ © along
- = () = =, = -
Y behaves like the corresponding limit of GF( )QE;Ef;E) holding E:
o N e 5 )
stant; it is this [behaving like GF 1 part of o,

Chapter 1 was termed its '"truly three-body' part éit(+). Note

t(+)

which in

is not uniquely prescriptive

t(F)
i

that the foregoing definition of 51

because it permits adding to [or subtracting from] [

£3 t
1

any part

which at infinity is negligible compared to p —5/2;

t(+)

o

is inconsequential, however, since
-5/2

this indeterminateness in 3,

terms negligible compared to ¢ make no contribution to (118a)

[when © t(+) replaces Ei(+)].

i The - definition does rule out of
5,
i

any terms which at infinity in the center of mass frame

-5/2

decrease less rapidly than p ,» or which are not everywhere

outgoing [i.e., which contain contributions proportional to

15/753.

our present purposes—namely, determining elastic scattering

e—ip instead of e It is understood, of course, that for

coefficients—nothing need be said nor has been said about the

permitted behavior of if(*o along directioms vV = xaB corresponding
. e d

to keeping r, finite as © » =, As a matter of fact, recombination
2

B

reactions, e.g., (17a), are "truly three-body"; moreover, when, e.g.,
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particle 1 can be bound to 2,

Vel y ¢

‘ P = Ky,
i @: )(x'l" Y2 E)~ ZQ}(S’Q)U-(’.C.,_) %M2
~12 J/ c1,‘2-

where aj(xlz) is a number, and where Kle is defined by (114b).

At infinite 919> the right side of (119) is proportional to P -1

[recall Eq. (116b)]. However, because (119) dominates 5 ~5/2

only on that subspace of %é corresponding to finite Tigs the total
contribution of (119) to} of (118a) remains finite [and can be

(2)

taken to represent the flow of probability current corresponding

to reactions such as (17a)].
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4.1 Divergences in Transition Amplitudes

This section will show that (in our configuration space
formulation) the divergences encountered in transition amplitudes
typically are associated with failure to recognize the implications
of the above introduction to this chapter. More specifically,
this section provides further illustrations of the prin¢iple
that the 6-functions (even if physically interpretable) encountered
in the configuration space formulation of scattering theory are
associated with improper mathematical manipulations. The 6-functions
considered in this section are those appearing in transition
amplitudes; it will be seen that these S§-functions generally are
a consequence of an invalid interchange of order of integration

OIS CORMYCS
i i

and limit r + « in integrals for @i . , etc., of the

(+)

9

sort discussed in section 3.1 in connection with integrals for G
[e.g., Eq. (99)]. Failure to recognize that such interchange of
order of integration and limit r ; © is invalid typically leads
to incorrect assumptions about the asymptotic behavior of the
relevant scattered parts [e.g., of @i(+)], and thus to incorrect
computations of the scattered cu;Fent flow [e.g., ofz}'via (117a) 1.

In particular, subsection 4,1 3will show that assuming 9 SC+)€£;E)

i

behaves like E(+)€§;EJ;E)leads to a divergent transition amplitude,

from which follows the (independently verifiable, see section E.3)

s (+) t(+)

conclusion that 51 indeed cannot be identical with éi
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4.1.1 Divergences Associated with Momentum Conservation

With the introduction to this chapter in mind, consider the
asymptotic behavior of the integral (52a), which is the simplest

(+)

expression we have found for the scattered part of Wi when the
incident wave is (21a), representing three initially free particles.
As has been discussedlin sections 2.2 and A. 4 - A.5], the integral

(52a) is divergent when two~body or three-body bound states can

occur, so that Eq. (52a) is not expected to be a gemerally useful

)

(-)*
£

starting point for determining the asymptotic behavior of @i
Suppose, nevertheless, Eq. (100a) [which is wvalid providing ¥

is given by Eqs. (106)] is employed in (52a) to infer

. ifle_
fim &7 (1) = -CyE)e” T(k~k,)
‘r—)ool\l’j_ fA— Lo (1202)

where the laboratory system transition amplitude

Y 9 76 ¥ , '
Tlek)= T, V4, =(dr ﬁ)(z‘)[\/.zu.oﬂg;rzp+v3‘u;,>]%z'> (1200)

(=)= :
on k, and kK. are
£ 1 ~f

specified by Eqs. (21a)and (100c), together with (106). Then, as

and where the dependences of wi and ¥
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(2)

has beén shown previously'™’, use of Eq. (120a) in (117a),

together with Eqs. (87) - (92) yields

2
= R | =
R dka)co\%fd'gydyzjdg#szKksjk,j(an)%)T(4&>Ej)}

= Jw(i‘aﬂ

(121a)

wherein the (unphysical, see below) laboratory system three-body

scattering coefficient

2
i>f)= (k>R )= ar 1 |T(R >R JSEE)AR dk dky 21,
(i) = w(k>k,) %rwl (k|87 de gl Ay e

The energy-conserving 6(Ef - Ei) factor is employed in (121b)

merely as an artifice, to put (121b) into a’'simple form consistent

with the results of time-dependent scattering and the "'golden

rule'"; the directly derived integrand of (121a) contains no G(Ef - Ei)’
(-)*

£

and the specification of V¥ in (120b) automatically makes Ef =k

i
The laboratory frame quantity w in Eqs. (121la) and (121b) should
be related to the observed scattering rate &, defined beneath Eq.

(2), by [see section 4.2]

A,;T(%%i-aﬁ.}) = NlNzNSM(gfa/%j») (121c)
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The form of Eq. (120a) seems consistent with the result
(117b) required for finite laboratory frame probability current
flow ¥ from (117a). Actually F is infinite, however (as expected
from the introduction to this chapter), because of the customary
total momentum-conserving S-function factor occurtring in laboratory
system transition amplitudes. Specifically, employing (33a) and

(102b), the integral (120b) reduces to

Tkl sl ) AFTEE ) [ Vig (210 + Yt

(122)

+ v?»(fg‘)] Q},"’(te E'z)

which, when inserted into (12la), causes 3J to diverge by virtue of
the [6(§f - 51)]2 factor under the integrand. Note that ' could
remain finite if merely 69§f~—‘5i) (rather than its square) appeared
in the integrand of [12la); correspondingly, w from (121b) can be
made physically meaningful only by'somehow reinterpreting (and
thus eliminating) oﬁe of the 6€§f —'51) factors in ngEi +’5f)]2.
Of course, the fact that T(}&1 +-5f) contains a momentum-
conserving S~function factor is gratifying on physical grounds.
Nevertheless, from the standpoint of this work's configuration
space formulation of scattering théory, this same fact must be
regarded as a signal that the computation of the laboratory system

transition amplitude has involved unjustified mathematical manipulations.
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In particular, the assertion in (120a) that 1lim ¢ (+)€£) is

ipJE 4

v Jo  1is prima facie incorrect by virtue of (55b), as the

i

introduction to this chapter has discussed. Moreover, to derive
the pair of Egqs. (120) from Eq. (52a) it is necessary to assume

[compare Eq. (99)]

B \dy G e Worz (x) = (ot i G(w>V(v)'u:(~r

'T""”"X 150 YJL (123)

Thus the interchange of order of integration and limit r » « in
(123) also must be incorrect, as can be directly verified by
comparing [as in the case of (99)]H%he contributions to the left
side of (123) from the regions r' < rand r' > r as r + « [see
section C.4].

Similar remarks [see section C.4] pertain to the result for
T(ki *nyf) 1f—still for ¥, of (2la)=Lqs. (90) together with inter-
change of order of integration and limit r - « are employed in
Eq. (42); in this faghien , one again obtains (120a), but now

with

Tleok)= 4% B = ) L)) By oo

As in (122), Eq. (124a) reduces to
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S .- %
T(Ey,‘ijﬁ(é?ﬂ) 3(55-5.) dj':'tp% (F; E)[ Vot (! el G )Mh y1260)

Y% =31

The integral (124a) has a 69§f - Ei) factor even though the
integral in (42) is convergent at real energies [recall section

- K
£~ &)

factor whether or not (52a) diverges, i.e., whether or not two-

2.2]. Similarly, the integral (120b) contains a SQE

body or three-body bound $tates exist. On the other hand, it is
true (see subsection 4.1.4 below)that bound states produce

additional divergences in (120b), as well as in (124a).
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4.1.2 Divergences Associated with Two-Body Scattering

The preceding subsection implies that if we wish to calculate
the reaction coefficient by means which are mathematically valid
and do not introduce divergent expressions, we must not make use
of the expression (117a) for the laboratory system probabiiity
current flow. Let us examine, therefore, the possibility of
calculating the probability current flow in the center of mass
system, via Eq. (118a). In particular, consider the asymptotic
behavior of the integral (52b), which is the center of mass
analogue of (52a). Then, as in subsection 4.l1.1 ignoring the
bound state complications which make (52b) a dubious starting point,

use in (52b) of the valid set of equations (102) and (106), together

with
fim N ATET(TIOIVTHV; (R
7\‘—)001@5_ |
= Jd¥'dm Gl 3 W) Wi E) 2
~ ¥5001lY (55X
¥
yields

o i
fm  3V(5) . -G (E)E T (k)

Ty, " AT 1260

where
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and where CZ(E) and p are defined as in Eqs. (102). Correspondingly,
~
using Eq. (126a) in (118a), the center of mass analogues of Lgs.

(121a) and (121b) are found to be

3

n

(127a)

j W (i>1)

~g ~nj= (127b)

w(i~>f)= wikok )zgﬁ__w_r.__l_l (kok IS, )k, 4

_or | lwak ia(e €K K, ok dk, di.
A (m)®

(127c)

where w is the reaction coefficient introduced in Egs. (1) and
(2).

In Eqs. (127b) and (127¢), as in Eq. (121b), the S-functions
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merely are convenient artifices for putting the final result into

(-)*

simple form; moreover the specification of W does not involve

K¢, and automatically makes E, = E Therefore, 1f T(k, > k.)

g0
contains no divergences,giemd w given by (127) will be finite and
well-defined. On the other hand, if T(k;, > k.) contains terms
proportional to 6-functions whose arguments can vanish on the energy-
momentum shell Ef = Ei and }'{f = }éi’ then & will diverge because the
integrand of (127a) will contain terms proportional to the squares

of 8~functions; correspondingly, w from (127b) or (127¢) will not

be physically meaningful unless the singular terms in the integrand
somehow can be reinterpreted so as to eliminate all powers of
§-functions higher than the first. Note that a factor 6§§f - gi)

in ngi - kf) actually would make the integrand of (127c) proportional
to [6(§f - 5i)]3; However, T(Bi > Bf) is independent of Ef or Ei;

in fact, Eqs. (120b) and (126b) immediately imply

Tl k) - B30 Tk &)

(128)

consistent with the result (122) previously deduced.

As was mentioned in the introduction to this chapter, this
subsection's procedure--namely calculating the probability current
~flow in the center of mass system--is mathematically valid for two-
body reactions, but not for collisions induced by the incident
wave (2la). To put it differently, T€51+-kf) from (126b) generally

is free from (on the energy-momentum shell) divergences for reactions
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produced by two-body collisions, even when these collisions cause
breakup (e.g., ionization) for one of the incident bodies(zs); for

the elastic scattering of three initially free particles, on the

other hand, it is well known(l"’s) that ﬁ(ék—i -+ }gf) contains S-functions
--associated with purely two~body single scattering--whose arguments
can vanish on the energy~momentum shell. In particular, consider the
contribution to (126b) from, e.g., the first two terms in the center

of mass analogue of (106a), which validly specifies ¥ ( )* . In other

words, recalling Eqs. (58a) and (72), replace ?f(~) gi') im (126b) by

g'%: 1R
,qf*—-:).g..@n_.f_( ("') Q 2 zge A.\Z.j-"'ll k )]

az-g %25-‘("’!2’ Al
-1K %/
~2 X -y
ze CFr (1292)
M Naz’ hlz.j')
(=)= . ~3/2 ,
where u, (rlz) [which does not contain the {2w) normalization

factor attached to u(£12) of Eqs. (113)] obviously solves

-3 V + YV, (1,) ~ B /&’92—5— —)*Mz)

3/';”— Qﬁﬂﬁ_ (129b)

and represents scattering of particles 1 and 2 in their own center

of mass system when (in that center of mass system) the incident

~-ik °r
. #12E ~12 . .
plane wave is e . Then one sees that there is a contribution

12k > &) to T(g; ~ kp)-—from the V,, interaction in (126b)-—of magnitude
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]
y¥ (Iu u+?2.i'r'?-)

(-)* e -1 ,\,g JA ?
f&‘z{_ u’qr d Gfe Zﬁ’ ‘?-a A,z’waz‘j)x{z “")e (130a)

Y
\.’\',Li V2.

= (an) S(K - K )d QAH L';?xzf)vgz(rn)e (130D)

al2f it A e

S0 Bk, K, %, (B, 0k,

L i e transition amplitude representing
where 1‘:12(1‘3121 > 'k;lzf) is th

scattering of the completely isolated pair of particles 1 and 2 in

P o . 21 A PR
their own center of mass system. Thus, for incident waves (21a), the quantities

"I‘(}f.i + 1’3 f) and T(}'{i - }Ef) » gupposedly representing three—body
transition amplitudes in the center of mass and laboratory frames
respectively, actually contain a contribution (130c) representing

purely two-body elastic scattering——of particles 1 -and 2 without

interaction with 33 according to the remarks following Eqs. (29), the
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§-function in (130c) guarantees that the laboratory velocity of the
non-interacting particle 3 indeed remains unaltered. Similar [to
(l30c)] contributions to Tﬁhi - 5f)’ with similar interpretations,
result of course from the other interactions in (126b).

Recalling the discussion in subsection 4.1.1, the divergent (on

the energy-momentum shell) &(K KlZi) factor in (130c) is a

12f ~ ~
signal that Eqs. (126) were derived using improper mathematical
manipulations. Correspondingly, the interchange of order of
integration and limit r > » in (125) must be wrong, as can be directly
verified [see section C.A]. Nevertheless, as has just been seen--and
as in the case of the momentum-conserving Gggf - 51) factor discussed
in the preceding subsection--the divergent term (130c) isrreadily
interpretable physically. I point out that the above conclusion--
namely that T(Ei > Ef) contains contributions representing a single

purely two~body scattering--was based solely on the form of the

contribution. (130c) to (126b). But (126b) has been derived from

the admittedly not always valid formula (52b) for Ei(+); it would have
been preferable to obtain T(Bi +(§f) from an always legitimate formula
(+) '

for 51 , i.e., from (69) sdpplemgnted by the center of mass version
of (61). However, starting in this latter fashion, it is immediately
obvious that T(Bi -> Ef) defined as in (126a) must contain a

) z
i

contribution-~stemming from the 512 term in ¢ --representing

the single purely two-body scattering of 1 and 2. Furthermore,
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Egs. (68) and (72) show explicitly that the assertion lim o (+)(r)

i
v 45/ E =
= eip E/p5/2[in (1262)] is prima facie incorrect, and that a
. = (+) . =
7 —_
6(k12f 5121) factor in the @12 contribution to ngi +~Ef) is

to be expected. Alternatively, if-—ignoring the accurate result

(72) for 512(+)—~one starts from the admittedly not always correct

[cf. Eqs. (60) or (105d)] analogue of (52b)

_—H’)“,’“ =il =
D, (F;E) - - [dT'6 7(F;

241

) %Z(}C,;} @; (%) (131a)

and then employs the analogue of Eq. (102a) [i.e., Egs. (105),

in effect] after performing the interchange analogous to (125),

one finds

(131b)

Comparing with Eq. (130a), one sees that the contribution to

= ) = (+) o= ()
Tgki +,5f) stemming from the @12 term in @i

the contribution (130c) previously obtained and interpreted. More-

is precisely

over the contribution to the integral (131la) from r' > ¥ is not

negligible compared tc 5 ~5/2 g -3/2 [see section C.4], so that

the interchange of order of integration and 1imit;é-+ © in (131a)

really is unjustified.

The foregoing discussion [especially in the last pavagraph] is
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relevant also to the expression for Tgki -> kf) obtained from (unjustified)
employment of (99) in the center of mass system version of (42);

this procedure again yields (126a), but with

ra

—(k "ki /q’;c V q}m 2’1’; '){Vnh],_)%-V(!‘uH -3',)]'_%-;87(131@

Egs. (124) and (131c) are consistent with Eq. (128). Replacing

= (), g ) _z Lz )
\Pi in (131C) by ‘Plz = lbi + (1)12 3 12

once more yields the two-body contribution (130c) to ngi +‘§f).

and using the V__, interaction,

If the fact that ngi - Kf) given by (131c¢) is divergent is
overlooked, and if (52b) or the center of mass analogue of (51c) is
employed in (131c) despite the fact that (52b) and (51c) fail when

two-body bound states exist, then
- [ - -
Tk, > ke) = ¥ T(EDD, = <£|T(E) 4> (1314)

where'z(ﬁ) is the operator defined by the center of mass analogue of

(5). Eq. (131d) (but with Ef replacing Ei) also follows from substituting-—-
with similar inattention to questions of mathematical validity--the

center of mass analogue of (100b) in (126b). Although (131d) is

quite commonly employed, the foregoing remarks and the entire contents

of this section 4.1 make it apparent that--for three independently

incident particles described by vy of Eq. (21a)--the seeming connection
(131d) between the matrix element < fLE(E)li > and the asymptotic

behavior of Ei(+)€§) at large‘é\[recall Eq. (126a) and its difficulties]
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has no real mathematical or physical justification. On the other hand,
for the transition amplitude ty (k12i 12f) of (130¢) it is

mathematically justifiable to write

ik ik.oey!
taz(%sz{%mazg) j%d‘r d‘?’ ,€ g - ‘?"t (v 2)8*42;"32

a0l ”az,muz.) 1

<"§ % Eiz<E%2>%fi> (131e)

2 2 2
where klZf = klZi = k12 satisfying(74b),

)2(325 ‘f;z;)\) = \{2{%2}%{“@?; «»82} X{zj(?:;zﬁ i"sz,’"!z) ) v;zivuz (131£)

and g., is the two-particle Green's function, defined as in (75);
12

moreover, 1t really is true that as€£12+ © along the direction of

kioe = k19 Byoge

. } 2 ksgi
MMW 12 (»sz)%sz )”% ’g;?z‘g? g o )! > (131g)
2

where ¢12(+) is defined by Eqs. (73)-(74). Similarly, it is justified

to write

i+ . {+) (4} ) {49
Pz k) = =3 VoW == [a7- 97V, 90 TV, W,

(+) - ) )
B S F E @i V;Z ﬁsa %{2}%{2; ? ~ig ﬁ'}(éj’“ (131h)

it

i
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as well as

GOl I _ CS) _

Eq. (1311) is the two-particle analogue of the not necessarily valid
(51c). Note that the first term on the right side of (131f), which

term has been denoted by XlZ in (131h), is not identical with

Vip(zsx') of Eq. (77a)«[recall Eq. (27e) 14 ¥ip of (77a) operates in the
nine~dimensional three~particle configuration space, whereas V12 of (131h)

operates in only a three~dimensional space.
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4.1.3 Divergences After Subtraétion of Two-Body Terms

The results of the‘preceding subsection imply that--whether or
not divergent, i.e., whether or not bound states occur--the integrals
(52) are an unsuitable starting point for mathematically unobjectionable
derivations of formal expressions for the three-body amplitudes T(lvgi - gf)
or T(hi > Kf). Similarly, Eq. (42) and its center of mass version—-
though generally convergent whether or not bound states exist--also
have been found to be mathematically unsuitable starting points for
deriving matrix elements of I or E, To have any hope of deriving
non-divergent expressions for <'fL§|i >, the purely two-body single

(+)

scattering parts of ¢ apparently must be subtracted away at the

very outset, before taking the limit r>- (as foreshadowed in the
introduction to this chapter). Therefore, I now shall examine the

contributions to ngi - 5f> and ngi - gf) obtained from the asymptotic

s(+) and 513(+), specified by Eqs. (67¢) and (69)

respectively. In any event, the starting point (69)--taken together
with Eq. (72) and the center of mass version of (61)--has the virtue

behavior of @i

that it provides a specification of Ei(+)€§) free from divergences

or ambiguities.

In Eq. (69), assume that

Jim J'rG )Vu(*r )é (r) d3 fim G(r T)V (132, (&)

Too|| 3 Fyo0li Dy (132)

Then in the by now familiar fashion, there results

(133a)

}inn §$6Q+) __C (EE) e f/ﬁ~ 1r,5<:%2 ‘9.42
f?.

F>0ll 9{.
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where

()% = TN
T (k> ’? [ 23+V3|)§|7_(Il)
(133b)

() BOE) + (B0

Similarly, interchanging order of integration and limit25-+ © in

(67¢c) yields

E
Hism CE (+) E)ef T (k %b ) (134a)

’Y->°°Ilv f)lr

where T° turns out to obey

A 3 =4
T kok) = (AU 3(K- k)T (hok,) @

consistent with Eq. (128).

In view of the preceding two subsections, the momentum-conserving
6(§f - 51) in TS(Bi > 5f) is to be expected from Eq. (68), and
requires no further discussion. On the other hand, there are no
immediately obvious reasons why the asymptotic behavior ;f 518(+)
from (69) should be inconsistent with (133a). Nevertheléss; the

integral (133b) also is divergent. In fact [see section B.2], the

right side of (133b) contains contributions proportional to
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%“ng - | K

] i ‘
+ § ZJ{ 1 g } (135a)

23
7 e,

and cyclic permutations thereof. Using Eqs. (29) and the relation

K, = K_, the expression (135a) takes the form
Al wf

6(&@2&“%%{ r By B

i #if TN

E (135b)

wherein the argument of the §~-function obviously can be zero on the
energy-momentum shell. Consequently the contribution to (133b)
made by (135a)--when squaved in Eqs. (127) after replacing T by T
agaln causes w and‘glto diverge, although the divergence is of
lower order with the one-dimensional §-function (135a) than with
the three-dimensional S-function contribution (130c) to ngi +‘5f),

Judging by our earlier experience in this chapter, therefore,
the assertion in (133a) that 1im 51(+) is ~ eiS‘/E/ES/2 must be
incorrect. In fact, it is shown in secition E.3 that there are
contributions to EiS(+)€i) behaving like 5'—2 as §'+ =, Correspondingly
fsee section E.2] it can be demonstrated that the contribution
to the integral on the left side of (132) from the region ¥' > ¥

-5/2

is non-negligible compared £o ¢ . Thus (as the result of section
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(+)

E.3 confirms), the subtraction--of terms from 51 -~yielding

3,5

5 is not yet sufficient to permit interchange of order of

integration and limit r » » in (132), although the >
contribution to the left side of (132) is smaller than the c.orresponding
contribution to the left side of (125) [compare the results of
sections E.2 - E.3 and C.4]. It is additionally noteworthy that
these results [of sections E.2 and E.3] hold whether or not bound
states exist.
Moreover, still consistent with our previous experience, the
result (135a) is physically interpretable. The particular é-function
(135a) arises in the contribution to (133b) made by the term

- (<)% -
Wf( ) V23¢12(+); more specifically [gee section B.2], (135a)

is obtainad from the
e = 136
’{3)‘{ @ 23% ’gf REF (136)

(-)

- %
part of 'i'f in the aformentioned term. But one sees--using Egs.

(51), (60), (77a) and (81), together witk the-LippmapppSchwinger nger

(-y*

equation for §2 ag

analogous to Eqs. (107)-~that

= () V ém o _ A

23§ '23 iz 28¢ 25 | g

GLEOV A e
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_ e
= - lim ¥y00V,08), (B + 1e)Vy 0y
€0
= 11m W23f(E + ie)V23 F(E + 1E)T (E + ie)wi
e (137b)
- % - — - - —
=~ lim g V,qC,q(E + 1)Ly, (E + 1e),

>0

- %e - - . - -
- iig wf,IQB(E + ie)GF(E o 1€)T12(E + 1e)wi

where, for our present purely interpretative purposes, interchange of
order of integration and limit € - 0 in (137a) is permissible. The
matrix element (137b) is explicitly discussed on p. 59 of Watson

and Nutta1l®

, and obvidusly is representable by a double scattering
diagram [see also section 5.3 below]. To be precise, (137b) corresponds
to a diagram wherein there is first a purely two-body scattering of
particles 1 and 2 (the factor le), followed by a period of free
propagation (the factor EF) and then a second final purely two-body
scattering of particles 2 and 3.

The preceding two paragraphs justify the conclusion that the

§-functions (135) arise from contributions to ® s(+)€£) which~-because

i
they arise from two successive purely two-body elastic scatterings--

cannot (and do not) behave like truly three-body scattered waves at

largelg. This conclusion is reinforced by the fact that the vanishing :
of the argument of the §-function (135b) really does guarantee the

necessary relations between initial and final momenta following the

two independent successive two-particle scattering events associated
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with the diagram representing (137b)--namely first particle 2 is

scattered by 1 with 3 playing no role, after which particle 1 plays

no further role as 2 is scattered by 3. Without postulating that

the total initial mnmentum‘ﬁg = 0, let the momenta (in units of &)

of 1, 2 respectively after the first scattering be k.', 52i where

ly
X~
:+
-

(138)

'+ 4!
~| Al

Since the first scattering is an elastic collision between 1 and 2,

P

¥ E-3
k12 klZi’ i.e.,

(Ima-t'mﬂ)/hlﬁi = !’ng: - Wak;.!: E(’Mﬁ-ml)k:' Pﬁ'( E;ﬁ'?ﬂ)i \ :m’ﬁ‘ ;

using {138)s. With the definition (29d) of k ,, Fq. {U38w) can be
put in the form B

R . =

l ?MiIi.% Ay Al /‘gfg?h?

But since particle 1 is unaffected in the sacond scattering, 51’ = Elf’

making (139b) identical with the conditien for which the argumeat of the

é~function (135b) vanishes. Other permutations of such two successive
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two-particle scatterings are associated of course with corresponding

permutatioﬁs of (135b), which in tumn corréspond to other [than (137a)]

terms in (133b).
Similar results (to those already discussed) pertain also to
s =S
derivations of T (bi 4-3f) or T €51 + Ef) from (134a) or (133a)
respectively, starting from the expressions for @is(+) or 6is(+)

given by (84c) or its center of mass analogue, In particular, one

thus finds

ks

T UA ) [@w(vaa 3|) t @ j_(va‘!s'" V3|)
¢ &y (V) | T

(140)
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while nggi +.5f) is given by the laboratory system analogue of
(140) and obeys (134b). Eq. (140) obviously is the time-reversed
analogue of (133b), and equally obviously suffers from the same
deficiencles--i.e., contains theAsame double-scattering divergences—-
as does (133b).

I now observe that the on-shell §-functions discussed in this
subsection, and in subsections 4.1.1 - 4:1.2, illustrate what appears-
to be a general relation between the asymptotic behavior of any

@ (or 5,4,

part of ®1(+) (or‘51(+)), e.g., ® and the

12
dimensionality of the S~function in the contribution this same
part makes to the laboratory or center of mass scattering amplitude.

Specifically, as > along directions Ve #¢3a6’ i.e., along

directions v_ not corresponding to the possibility of propagation

~f
in bound states: (a) 512(*)€£?, cf. Eq. (72), decreases like
C+)(r ), i.e., like T -l 2 —l, and the associated contribution
to T(k > k ) contains the three-dimensional &§-function G(K12f 1Zi)

[recall the discussion preceding and following Egqs. (131)}; (b)

the laboratary frame o, (+)(r (+)(r12),
1

i.e., like r-_*l Z o , and the associated contribution to T(k >k )

2) still decreases like ¢12

contains a six—dimensional §-function, namely 6(Klzf lZi)

multiplied by B(Kf - §i); (¢) according to section E.3, there
A

are parts of 513(+)(§) decreasing like P _2, and these parts

apparently give 'rise to the one-dimensional §-functions (135)
contained in Ts(k > Re)o
Y,I)Vi ~f
Evidently’iﬁ the laboratory frame the rule is: ‘' gg

r > |] Ve # XaB% if the part °f~®is+)€5) under consideration

/2 ~4
X/?p » Where x is.an inveger > 0, then the associated

“
4

decreases like p
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contribution to TQci +-§f) contains a é-function of dimensionality

x. Similarly, in the center of mass frame, if as -+ || Ef #-gaﬂ
- - - - -5/2

the part of ¢1(+)(£) under consideration decreases like pY/Z p / 5

where y is an integer > 0, then the associated contribution to T(&i + ko)
contains a §-function of dimensionality y. Of course, because (55b)
holds, the §-function dimensionalities associated with corresponding
values of x and y are related by x = y + 3, Moreover, these rules

can be understood. Along directions 3f # XaB’ the scattered part of

+
1

spherical wave in nine dimensions, i.e., like GF(+)(£;£f), which is

Qa) normally would be expected to diverge like an outgoing

of order 0_4 at large r. The amplitude with which ¢1(+)(5) diverges
along y. is measured by T(}éi -+ kf) of Eqs. (120). Because of special
symmetries in the interaction’V, however, all or parts of ¢1(+)Q£) may
not be able to diverge in a fully nine-dimengional fashilon along all

i(+)Q£) or parts thereof are being

forced to diverge in a restricted space of less than nine dimensions,

¢ # Yag® These inabilities mean @

i.e., that ¢ (+)(£) or parts thereof actually will decrease

2 =4
x/ 0

i
asymptotically like p , Where x is an integer :_b, and where x > O
corresponds to restricted proﬁagation'in the sense just described.
Correspondingly, for ¢1(+)(§) or parts thereof with x > 0, postulating
(120a) is wrong; the resultant &-functions in T(ki +-5f) reflect the
failure of (120a), as has been discussed, but also express the x
independent aforementioned restrictions on the directionijf into whiche~
for given xi-~¢i(+)Q£) or parts thereof can propagate. For example, the

fact that V is independent of R means ¢1(+)(£) has a factor
R *+)
e , so that no part of @i (£) can be diverging in a space of
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more than six dimensions (the space of £,E‘212"312)’ i.e., even
¢it(+)(r)——the "truly" three-body scatted part of ®i6+)(£)—~

5/2

decreases asymptotically no more rapidly than p ; correspondingly,
even the truly three-~body scattering amplitude Ttgki é}kf) will

have the three-dimensional éggf d,gi) factor required by (128),
which factor also expresses the fact that @it(+)€£) actually is
propagating to infinity only along directions v consistent with

f

the three independent requirements§f = Ei’ The

center of mass frame rule cited above is similarly understood.

The considerations of this paragraph make i1t quite clear that

the complicated analysis in section E.3 is basically correct, i.e.,
it now is quite clear that the presence of the one-~dimensional
§—functicns (135) deduced in section B.2 must be associated with

- +) - .
the existence of contributions to @is( )Qz) behaving asymptotically

like p 2.
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4.1.4 Divergences Associated with Bound States

In addition to the on-shell §-functioms which have been
discussed, the amplitudes T and T given respectively by Egs.
(120) and (126) contain off-shell 8-functions when two-body
bound states exist. These off-shell §-functions in T and T have
essentially the same form as those [e.g., Eq. (47)] oewmurring in
Egs. (52), and their presence in the integrals (120b) and (126b)
is demonstrated via essentially the same argument as was employed
[in sections A.4 - A.6] for Eqs. (52). For example, because
Wf(‘)*(fj) in (120b)--1like G(+)Q§;£') in (52a)--can contain a term

ip'VE - €,

proportional to e i u

j.(,1312')/0'5/2, the V

12 term in (120b)

contains a contribution behaving like [see section A.4]

S(JEf—e} - \[Ei-(’ﬁ"hfn/z/u,z)

(141a)

when there is a bound state uj(;lz) of energy e, into which particles

i

1l and 2 can combine during the collision. The corresponding

contribution to (126b) is proportional to [see section A.6]

5 (K

2t Km) (1415)

where Eq. (114b) defines K in terms of E_.; the §-function (141b)

125f £

is the result to which (l4la) reduces [except for constant factors]
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when‘gf is set equal tolﬁi. I note that these §-function contributions to

+) or Ei("‘)

large distances, and therefore are associated only with those bound

T or T arise from the asymptotic behavior of o at

states uj(sas) which actually can be formed during the collision
of three initially free particles; in Eq. (52a), on the other hand,
§~-functions are assoclated with all possible bound states of the
‘three-particle system, because all such bound states are present
in the asymptotic limit of G(+)€£;£i) at large 5}. For example,
because energy-momentum conservation prevents three initially free
particles from combining into a three-body uj(£12’ ;23), the existence
of three-body states does not cause (120b) to diverge, though such
states do ﬁroduce divergences in (52a) [see section C.5].

The presence of the divergences (1l4la) or (141b) has the usual #
significance, namely that Eqs. (123) or (125) respectively must
be invalid. In particular.[see section C.5], the §-functions
(141a) indicate that at large r the integral on the left side of
(123) has non-negligible contributions--compared to r_4——from
bound state propagation in the region r' > r along X&Z' (where
rlz' remains finite as r' = «), much as in the analogous integral
on the left side of (99) [where r'" + « along v, 2", recall section

1
C.1]. Of course, these contributions to the left side of (123}

¥

12

the contributions dominating 1:'--4 from r' -+ « along arbitrary directions

from r' 4 « along‘x are in addition tp--and in no way negate——'
‘z', to which we ascribed the failures of (123) discussed in the
preceding subsections. Moreover, as (by now) is to be expected,

the §-functions signaling the failures of (123) or (125) due to
bound states are readiiy interpfetable. For instance, the 6-function

(141b) correspdnds to conservation of the energy of particle 3
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'relative to an observer moving wifh thé éénter 6f maés of‘the entire
system, as 1s physically reasonable for a contribution to the V12
term in (126b) associated with formation of the bound state uj(lglz)°
Nevertheless, despite this possibility of interpretation, it
is doubtful that the 6-functions (141) ocqurring in (120) and (126)
have any physical significance whatsoever. I now am contrasting
the §-functions (141) with those discussed in subsections 4.1.1 -
4.1.3, Admittedly the 6-functions in subsections 4.,1.1 - 4.1.3, like
the 6-functions of this subsection, are encountered in the configuration
space formulation of scattering theory under present consideration
solely because invalid mathematical manipulations have been performed..
Naturaily, such invalid ﬁanipulations always should be avoided if
possible, especially 1if they lead to expressions for presumably
physically meaningful quantities--namely transition amplitudes-—-
involving non-convergent integrals. There is no immediately urgent
physical reason for introducing valid mathematical procedures so as
to avoid the §-functions of this subsection, however, since these
S-functions make no contributions to the scattering coefficients
w or w computed from Egs. (121b) or {(127c), by virtue of the fact
that their arguments do not vanish on the energy-momentum shell

[e.g., remewbering €, < 0, Eqs. (35) and (114b) show the 6-function

3
{141b) cannot be infinite on the center of mass system cnergy shell
Ef = Ei]; the d~functions of subsections 4.1.1 - 4;1.,39 being on~
shell, make infinite contributions to Egs. {(121b) or (127¢), and so
must be gvoided via mathematically acceptable procedures--or at the
very least via some sort of veinterpretation [recall ﬁhe remarks
following Eq. (122), and see ssction ée2]mwif>physically sensgible

reaction coefficients are to be computed.

Moreover, the steps which must be taken to avold the d-functions
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of subsections 4.1.1 ~ 4.1.3 are physically as well as mathematically
significant. Section 4.1l.1 implies that the probability current

flow must be computed in the center of mass frame; section .4.1.2

+)

means that two-body scattering terms must be subtracted from 51
before the computation of the three-body scattered current flow
is initiated; and section #.1.3 showsthat it will be necessary to

(+)

initially subtract from <I> certain double-~scattering terms as

well. The §—-functions of this subsection, on the other hand, are
eliminated without any subtraction merely by starting from the

{terated formula for 3 ) implied by (61) and (69), instead of--

i

as heretofore in this section--from the formula (52b). More precisely,

start from (61) and (69), but use the formula

=), - =t A+ = TN At =i
76, (¥;X)V,(
@ ): d GIZ }f)x)vﬂ n,) 1(?) (142)
in place of the known closed_form result for 512(+) given by (72).
Then, performing on all integrals in the formuls for @i( ) the usual

invalid interchange of order of integration and limit r > «, one

again obtains (126a), but now with

(143)

T . "’"H* @*
T@e\,t—){gf) i /?, ?235, 'L
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where nggi *ﬂkf) is given by (133b). Section B.2 shows that (133b),
though of course still contéining the §-functions discussed in
subsection 4;1.3, has no 6-functions of the type (141b) assoclated
with bound states. Similarly, the other terms on the right side

of (143) contain no 6-functions associated with bound states;

in fact, recalling Eqs. (105) one sees that, e.g., the quantity
defined by (130a) wad evaluated in (130¢) {which obviously contains

no §-functions of type (141b)] is identical with the quantity

(=)%, -
126 V12%y

bound state propagation does not invalidate Eq. (132), consistent

¥ on the right side of (143).. Section E.2 shows that
with the absence of bound state §-function divergences in (133b).

I stress that the preceding two paragraphs do not mean that
the presence of these §-functions (141) in (120b) and (126b) is
wholly inconsequential. As gubsections 4.1.1 and 4.1.2 taken together
illustrate, it may be easier to take account of some on-shell §-
functions than of the off-shell d—ﬁpnctions (141), which [if the
on-ghell divergences wewxe not present] would cause the integrals

(120b) and (126b) to be oscillatory. In particular, approximate

- '*' - ) . .- e e e P - e ———— A - -— -
f( ) can be constructed whidch--when inserted into

-estimatea of ¥
(126b) so as to obtain approximate estimates of f€§1 +t5f)~—enable
essentially exact subtraction of the single scattering twobbody
contributdons [known exactly from (130c)] on the right side of

(143) ; however, even if there were not the double scattering

(-)*
£

probably would give very poor estimates of TSQE& *-5f) because of

complications discussed in subsection 4.1.3, such approximate ¥

now non-vanishing contributions from the 6-functions (141b) [compare
the discussion of the significance of the d-functions (47), in
section 2.2 following Eq. (48Y]. ©f course, this particular

difficulty associated with the é-functioms (141) is perforce
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é§oidea when 53(51 4-§¥)‘i;-egfiﬁated s;arciné/froa'ﬁq;d(idb). 'I
also point out that the preceding two paragraphs must not be taken

to imply that the exact Ts(ki *.Ei)°"°r better yet the exact truly
three-body amplitude Tt(51 *,Ef) obcaingd from the asymptotic behavior
;f 5it(+)——do. not h;ﬁeiéinguiarities (as functions of k) where

the arguments of the §-functions (141b) vanish. I mezely am insisting
that the presence of off-shell singularities cannot be inferred
legitimately from oscillatory (i.e., mathematically undefined) on-
shell integrals for Tgki +~bf), It is necessary to start with a
convergent integral [e.g., T#(ki > Ef) or TS(Ei > Ef) with the
double—scéttering contributions (135) subtracted out]. The analytic
continuation of this originally convergent integral well might

have singularities at K = KlZi; on the other hand there is no

123f
reason to think these now legitimately inferred singularities at
Klef = KlZi’ if actually found to exist, would be of the G-fqnction
(141b) type.

It i1s worth noting that the off-shell 6~functions we have been
discussing show up in the expression (124a) for Tgki *}ﬁf) even
though such 6-functions do not appear in the real energy Lippmann-
Schwinger integral equation (42) from which (124a) is derived.
Correspondingly, bound state propagation invalidates the interchange
of order of imtegration and limitjs + ]l Vg in the integral on
the right side of Eq. (42), even though (42)--unlike (52a)--is

convergent; specifically, at large r the integral (42) has contributions

~h N, -
of order r 4 = P 4 from bound state propagation in the integration
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eegion r' > r, as shown in section C.5. Similar comments pertain

to the expression (131) for "f‘(’lsi + ko).

I conclude this subsection with some remarks stemming from the
relation (131d). Although the argument leading to (131d) is unsatisfactory
[as has been explained], nevertheless the results of this entire
section 4.1 probably are relevant to the physical significance of
< £{T(N) |1 > and the §-functions contained therein, when i, f each denote

center of mass plane wave states, and when A equals one or both of Ei’ E £

At -the mohentprhowevet (Evam notapreparedepsrstate piattselychow.
the considerations of this particular subsection 4.1.4 relate to the

bound statersingularities found by Rubin et al.(s), who {in the special

case of Yukawa interactions VaB] examine < f I?’(Xﬂ)'i > as a function of

-1/2k

A for fixed assigned physical values of the vectors = (2m_X)
Kol a rai

and y . = (2m 'X)—ll 2k associated with the i, f plane waves
~af a ~af ;

i
i

respectively.
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4.2 Volume Dependence of Reaction Rates

Eqs. (2) and (121¢) imply that w defined by Eq. (121a) and w

defined by Eq. (127a) are related by

w(‘{q‘“’t—%éf) = Wﬁ(klééf> (144)

where T is the large volume within which the three-body scattering
of present interest is taking place. That the ratio w/w must be

a quantity having the dimensions of volume can be seen simply from
comparison of the right sides of Egs. (117a) and (118a). The
quantity‘E is defined via Green's Theorem in the center of mass

(16) with Eqs. (&5), and therefore has

space in complete analogy
the same dimensions as‘ﬂ'(since the center of mass kinetic energy
operator; T has the same dimensions as T}; however, the laboratory
system surface element at infinity dS is eight-dimensional in

the present three-particle problem, whereas dS is merely five-
dimensional. The particular relation (144) is obtaingd from an

(2)

argument given previously'“’. From Eq. (128),

[Tl >k,) |7 = (300 [50¢,-k] [ Ttk

vo~f (145)

But, as pointed out beneath Eq. (122), to make w physically
meaningful, one of the §-functions in (145a) must be eliminated,
presumably via some reinterpretation of Ggﬁf - §i)° A natural

reinterpretation is
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(\21(> 3 ~ (146a)

(146b)

Using (145) as reinterpreted by (146b) in (121b), and comparing with
(127¢), yields (144).

Actually, because of the on-shell divergences discussed in
subsections 4.1.2 samd 4.8.3, mse of (146b) -isinduffieient to make
physically meaningful the quantities w and w of Eqs. (121b) and (127¢).
However, the procedure of Eqs. (146) can be employed to eliminate
all troublesome squares of S§-functions in (121b) and (127c¢), thus
ultimately yielding finite (in any finite volume 1) probability

current flows T and g— Thus, in, e.g., the coptigibueion: (130c): . to T(b&l >

k)
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‘Iq_‘(l;atm -—1 = (2) S(ngf- Ku ) % ~ez ~|25)‘ (147)
(2’") T 8(542;;— Ku ) E az( ~12i ""Zi)l

Inserting (147) into (127c¢), one sees that w(i + f) has a contribution

I will call ;712(3) (1 + f)--corresponding to purely two-body elastic

scattering of 1 and 2 in the three-particle system--given by

Itk ok ) '8(e,-£050 k)

A2 "'tzj-

“‘”(twf 2. |
ERrD:

S(Kuzf— %—szi) dk.&c]gzj_d&si (148a)

] S(E;-ENO(K ~Ky)

~|z‘; "'\25-

X 8(?# -k:ii,\)d'h\lj-d&).j—dgsj- (148b)

using the second equality in (29c) forﬁlz. Therefore, integrating

(148b) over d}§3f

Bleon-m el b,oh,)l s

X 8(@{}%): & 13 “"ll)
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or
WO (o) = ¥ W D(inf)
(149a)
where
m(’l.—)f ) = 21 .___!__._.It.z('ku? klzf)lé(-h :m 2,{e ~1uf (149b)
'h (2“)3 2 Mz

) ‘h (21\')3’ Y. g »lz{-), S(E E)S(K Kk dk, o

In Eqs, (149), §12(2)(i + f) represents the conventional
elastic scattering coefficient for particles 1 and 2 in their
center of mass frame: the definitions of the two-particle total
energies E and total momenta K in (149c) are obvious. It is
understood that particle 3 never appears in the computation of
51 2) or its laboratory frame analogue wlz(z), in particular,
these quantities gre computed using‘Schroéﬂdgge%ésagqaﬁtdmﬁﬁ&vr
particles 1, 2 only, with incident waves--in the laboratory

and center of mass frames respectively~-
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/qri. = € i L) (150a)

e ~|2' ‘Ilz

;.E
i

(150b)

Furthermore, Eqs. (149b) - (149c), which are the two-particle
system analogues o‘fa:EQs.l; (127) - (127¢), can be derived without any
improper mathematical manipulations, beéause with the incident

wave (150b) the problem of computing 512(2)(1 + f) reduces to

(2)

potential scattering; correspondingly, 512 is assuredly

t-independent. But, using (144), to the relation (149a) corresponds
{3), . a2,
A1) =T W0 (1 f) (151

Therefore, as foreshadowed in Chapter 1, Eq. (121b)--taken together
with (121c¢c) or (2)—implies the quantity Tal ﬁ(bi +-Ef), supposedly
representing the actually observed scattering rate per unit volume

into wave nunber ranges dklf,§§2f,4k3f, will not be independent

of the volume in the limit t » « for all k k

kigs Kop> 1}'%. Rather,;? at
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.klf’ EZf’453f consistent with the restrictions imposed by the three
8-functions in (148a) or (148b), tmlﬁ' seemingly will be proportional
to the reaction volume 7.

The above result is just another way of seeing that w and w
of Eqs. (121b) and (127c) are not the "true" three-body elastic
scattering coefficients; these, as discussed in Chapter 1, still
will be computed from (121b) and (127c¢), except that the true

t =t

three-body amplitudes T (51 +}§f) and T Qbi > Ef)——determined by

t(+) and Eit(+)

the asymptotic forms of ¢, --will replace T and T
respectively. This last remark suggests that the result (151)--
having been deduced by a somewhat questionable argument (147),
starting from formally divergent expressions (for T or T) derived
via invalid mathematical manipulations--does not have any physical
significance. This suggestion is incorrect, however, as the
immediately following subsection ghows. Instead, the volume
dependence of (151)--1ike the 6-functions of (128) and (130c)

which are its source--is physically interpretable and, in fact,

to be expected.



156

4,2,1 Volume Dependence and Incident Wave Normalization

One subject which‘has been ignored thus far in this work is
the genesis of the relations (2) or (12le). To be more explicit,
there is the following question which should be answered: Because
the normalization of the incident wave (2la)-rnamely.unit. smplitide-—
is a purely arbitrary choice, how do I know that Eqs. (2) or (12le)
relate the actually observed scattering rate to the probability
current flows computed from wi of 1(21a)? .0x, to put dt differently,

granted I somehow have managed to determine the asymptotic forms

[ g g EO .

smplitude incident wsve (21a), how do 1 kmow that the corresponding

of the truly three-~-body ¢ corresponding to the unit

(presumably divergence-free and therefore r-fimgependent).center of
mass frame "true" three-body coefficient 3(1:* £) yields the

expected laboratory frame reaction rate after multiplication by

precisely NlﬁzﬂsT?

Before trying to answer these questions for three-body
scattering, let me try to answer their analogues for conventional
two~body scattering of species 1 and 2, in the complete absence

of species 3. 1In this latter event, the analogue of (2) is

- — [P

4:)'(2)("@ ' 'ﬁ ."‘%'k ‘k ) NN ,E,wm(‘sumh Ma(.'..zf) (152a) :.

12 Volv 2w mif’«

(2) is given by (149b) or (149c¢c) and where wlz(z) represents

the observed scattering rate of particles 1, 2 into dklf, dsz”in

where w12

a large volume T containing particle species 1 and 2 only. Then the
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customary (and quite satisfactory) way of understanding the volume
depeéndence of (152a) is as follows. One first observes that

Eqs. (130) and (149b) imply

- (1), . _
an (’Le-ﬂ - h{u (152b)

i

i fgl‘ o UE::. > E'zj') d’nn.j—

where 5(5121 > klZf) is Fhe conventional center of mass frame
differential cross sectién for elastic scattering into the

direction Dyo¢ of ElZf’ computed as if for potential scattering of

a particle having mass “12 and incident wave vector‘§12; xl, y, are
the classical particle velocities, of course, and it is understood
that scattering occurs only into klf’EZf consistent with energy-
momentum conservation. By definition of the cross section, however,
if a beam of particles l--containing N1 particles/cc with velocity
Xl——is incident on a single particle 2, the number of elastic

scattering events per second into 4212f is

N" l/U -V, | (Bizi«—)'gnj) d 3‘»;15_ (152¢)

T4
The scattering rate & wiﬂ1f& = NZT scatterers will be N2 times
(182c¢) , which--using (152b)--is precisely the result (152a).
The foregoing interpretation of (152a) is not reddily

generalized to collisions involving three jmeident-particles because for
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three-body collisions it is not readily possible to find a quantity

playing the role of the cross section; there is no useful analogue

of the cross section because the three-particle center of mass

frame incident wave (33b) propagates in six rather than three

dimensions, so that going to the center of mass frame does not

reduce the three-particle collision to potential scattering. How-

ever, I now shall give an alternative interpretation of (152a)

which--because it rests on considerations of the laboratory frame

six~dimensional two—particle incident wave (150a)--is easily

generalizable to collisions between three (or more),particles.
Obviously the average scattering rate from a volume T containing

randomly and uniformly distributed particles 1 and 2, in numbers

ﬁl = Nl-r and ,I\\IZ’ will be ﬁlﬁz times the average scattering rate from

the same volume containing oﬁly a single particle 1 and a single

particle 2, assuming these singleAp;§tic1es each may be found

anywhere in 1 with uniform probability per unit volume. The incident

plane wave function corresponding to (150a), but normalized to

one particle 1 in“t and one particle 2 in T 1is
|
v (153a)

because, e.g., the probability of finding particle 1 in any d£1

within Tt is

dr

l
T o~ (153b)

d+ | dt Mr-'@ »)f: dr 1 {dr. =
~ ~7 1 1) A2 ~ - ~
3 ‘ 'rZJ 2
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Nr the other hand, bhacauge Tq. (508) shows @i(E + ie)~--and therefore
also 1ts limit @i(+)(E)-~rigoroué19 is multiplied by T-l when vy

is multiplied by T ¥, it follows from Eqs. (45a) and (117a) that
the outgoing probability current flow computed with wi' of (153a)

is precisely 1—2 times the corresponding flow computed with wi o
(150a) . In other words, recognizing that the definition (121a)

of w applies to two-particle as well as to three-~particle systems,
the scattered probability current flow computed with wi' of (153a)

yilelds precigely

A\ (155) = TP ig)= TR (i24)

wherein the second equality holds because the conventional laboratory

and center of mass frame two-particle scattering coefficients—dwlzfz)
(2)

and w12 respectively--also satisfy (144). Moreover, ﬁi;(Z) of

€154), with 512(2) given by (149b), represents the scattering rate
when a single particle 1 and a single particle 2 are to be found
2
1y = N N,7° again yields (152a).
The fact that (154) represents the scattering rate for a single

in t. Multiplying (154) by N

palr of particles also can be understood on the following less
exact but very physical basis. In a génuinely two-body collision
involving short range forces, it can be assumed that scattering
takes place only if the two particles 1 and 2 manage to get within
a (possibly dependent on le - Xz+) distance b of each other, where

b
. . -2
the total elastic scattering cross section ¢ = &b~ . In effect
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this relation defines the (dependent on relative velocity) quantity
b: of course, often--but not necessarily--b turns out to equal
approximately the range at which the interaction Vlz(;iz) becomes
negligibly different from zero. Now again consider a large volume

T containing precisely one particle 1 and one particle 2, each of
which may be located anywhere in t with egual probability per unit
volume. Then at any given instant, in any given volume " b3,

the probability of finding particle 1 in T, is TOIT. Hence the
probability that particles 1 and 2 are scattering within Ty at any
given instant = (10/1)2, the probability of simultaneously finding

1 and 2 within Ty The number of such volumes Ty in 1 is t[ro.

At any given instant, therefore, with one particle 1 and one particle
2 in 1, the probable number of scatterings taking place is Tolr.

To convert this result to a scattering rate per particle pair, one
must divide by a time t, representing the average "duration'" of a
collision, i.e., the average time a pair of particles remains within
scattering range; this division by tc recognizes that even with a
large number of particle pairs in T, scattering continues at a
steady average rate only because particles complete one scattering
event and move into a new volume Too where the§ again have a chance
TO/T of scattering against any other given particle in t. Hence

the scattering rate per particle pair in tiis = To/th° Since

tc = le - 32F~1b, this scattering rate per particle pair has exactly

the form (154), recalling (152b) as well as the definitions in this

paragraph relating T and 0 to b.
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Now, having managed to give simple laboratory system interpretations
of (152a), I turn to its analogous three-body relation (2).
First, let me proceed inexactly, though qualitatively correctly,
as in the preceding paragraph. A true three-body collision
between particles 1, 2, 3 occurs only if the three particles
simultaneously find themselves within some volume To'(possibly,
but not necessarily, of the same order b3 as in individual two-
particle collisions between individual pairs o, B). With a single
particle of each species o fa = 1, 2, 3§'£i?aniarge Vﬁlﬁﬁé?t;:tﬁéf
probability of simultaneously finding all three particles in a
given t_ is (70/1)3. Letting 't again denote the average collision
duration (now not as readily related as previously to the relative

particle velocities), the true three-body scattering rate per

triplet 1, 2, 3 in 7 is

Ay
. ~ 3 .
W(ﬂ.—)j—) = (’T’o) L Too (155a)
dy To t. q-‘l-tc
Thefefore,the laboratory frame scattering rate with‘Q; = Na%
particies in 1 is?
S A
As(1>£) = N NN’ 2 NN,N;T_Ts
t. (155b)

Eq. (155b) has the form (2); in particular, it asserts that the
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measured laboratory scattering rate should be proportional to T,
as well as to N1N2N3; If Eq. (2) now is regarded merely as a
definition of the proportionality factor w between the actually

observed three-body scattering rate & and N]FZNBT’ then (155b)

shows

Ty

1¥¢

Z
Cté (155¢)
T

Thus, if Eq. (2) really provides a prediction of the measured #
in terms of the true three-body reaction coefficient w determined
from Eit(+) [as this paper has been asserting] then calculations

of this w from Eit(+>

should be eonsistent with (155¢). In other

words, the computed true three-body scattering coefficient W

should turn out to be t-indepéndent, and should be interpretable

as the square of a reaction volume divided by the collision durationm.
I also can argue as in the next to the last paragraph abuve,

wherein no approximations were made and no ill-defined average

quantities (e.gs, tc) were introduced. The incident wave function

corresponding to (Q¥&), but normalized to one particle of each

gpecies 1, 2 @and 3 in 1 is [comparé Eq. (153a)]

”L(&.‘I +R Tt Ba'rs)

H ~d ™

/1%r! = | e
1 ",'r"glz (156a)

Thus the true three-particle collision rate with one particle of
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each species in t 18 precisely

A

A5 = Y a(if)= VB ase

where w, w here are supposed to be the true reaction coefficients

t(+) z t#)

determined from & @ corresponding to the conventional

i i
incident wave (21a), i.e., determined from the truly three-body
+) = &)
parts of the conventional @i , @i whose asymptotic forms

were examined in section 471. Multiplying the precise scattering

rate (156b) per triplet by the number of triplets

& e 3
RRR, = wpewe®
words, the argument of this paragraph implies that the measured

in T yields precisely Eq. (2); in other

scattering rate W, add the reaction coefficient w determined as
described in the preceding sentence, indeed must be related as
in Eq. (2). Note that this present argument does not imply ¥ is
proportional to v; w in (156b) might be T-dependent, for all this
present argument knows. However, the fact that the true three-

body reaction coefficient w is independent of T will become

t(+)
i

and not employing any improper mathematical manipulations. Alternatively,

apparent when w is calculated correctly, i.e., starting from P

having now shown w in (2) indeed must be the true three-body reaction
coefficient, I can appeal to the considerations of the preceding

 paragraph--in particular to Eq. (155c)——ghﬁs inferring [without

7 t(H)
i 1

actual calculation of w from & that such calculation
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will yield a w independent of t. In fact, once Eqs. (155a) and
(156b) each have been deduced, the relation (155¢) for the true
three-body reaction coefficilent w of (156b) follows imnmediately,
without any necessity for referring to Eq. (2).

This result answers the questions raised in the first
paragraph of this subsection. I turn therefore to the problem of
understanding (151). The guantizy wlZ(B) of BEgs (131).
represents the laboratory frame coefficient for two-body scattering
of 1, 2 when computed from the solution Wi(+) to the three-particle

Lippmann-Schwinger equation corresponding to the three-particle

ke

incident wave (21a)s _New what two-body rateigigxsgief 1; 2 .
scattering should be expected with the incident wave wi' of
(156a)? The answer to this question, clearly, is the same rate
(154) as was computed using the two-particle wi' of (153a),

because both these incident waves correspond to one particle 1 and

one particle 2 in t. In other words, it must be true that

’( p) - (z, 2
P 5$) = DOis ) ETOGrg)

But, as explained previously following Eq. (153b), the probability
current flow computed with ¢i’of {156a) is pregisely 1—3 times
the corresponding flow computed with by af {21a). Therefoze 1
see that with the incident wave (21a).I must esmpect to fiandaa

laboratory frame two-body coefficient
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A4 >4) = T P gy - fm D(i5$)

(157v)

which is precisely the result (151) obtained earlier from the

(2) (3)
12 amd vy,

A
elements le(i -+ f).

expressions for w in terms of the matrix

The argument in the preceding paragraph makes it apparent that
(3)(1 + £) is necessary if the predicted

12(3) using the three-body

the 12 dependence in W19
observed two-body scattering rate ¥
incident wave (214) is to agree with the conventional prediction
ﬁlz(z) of (152a) obtained using the two-body incident wave (150a).
Indeed, one can say flatly that if adding an irrelevant particle

3 to the pair 1, 2 had changed the physical predictions, this publi=
mehole approach to mapy-particle colliisions weuld have

become very questionable. The preceding paragraph and earlier
discussion in this subsection also suggest a simple series of

rules for making the connection between collision theory and
experiment, for any collision process and whatever the number of
particles involved: (1) compute the reaction coefficient using

unit amplitude waves; (1i) if the mathematics has involved

invalid manipulations, so that on-shell 8£fumcgions appear in the

transition amplitudes, fteinterpret them along the lines of Egs.

(146) - (147), permitting only the first powers of §-functions to
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remain in w or w; (iii) renormalize so as to correspond to an
incident wave with one particle of each species in a volume t;
(iv) multiply by the appropriate number of particle pairs,
triplets, tetrads, etc. (e.g., by /‘\‘ﬁz ;-K'lﬁzt/z“- for two-
particle processes, by ‘N1N2N31'3 for thwee-particle processes,
etc.), to obtain the laboratory system reaction rate ¥ in 7.

Granted I haven't proved the legitimacy of the above rules,
this subsection makes it unlikely that they are not quite
generally applicaBle. On the other hand, I must poilnt out that
especially rule (ii) shove is dubious; certainly I have not shown
that the prescribed replacement of powers of on-shell 6-functions
by powers of T always will make good physical sense, although
the likelihood that this will be the case now seems much greater
than previously might have been supposed. In particular, the
next subsection will demonstrate that the t-dependence implied
by the double-scattering §-functions (135) can be understood
physically. Nevertheless, it is apparent that the results of
this subsection in no way negate the results of previous sections,
The presence of §~functions in transition amplitudes still
signals improper mathematical manipulations, generally reflecting

the fact that. -erre

Al assumptions hav%é:,ib:eag;?made -conceriinge
the asymptotic dependence of the scattered wave terms “hose

linit as r >« is being extracted; the corresponding anomalous
T-dependences of computed reac_:tion coefficients indicate the same
fact from a different point of view, i.e., they indicate that

physical processes other than those desired have been included,
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e.g., two-body scattering in the supposed three-body reaction
coefficient.

Section 4.3 below illustrates the fact that qualitative
arguments like those leading to Lqs. (155) can lead to a predicted
center of mass reaction coefficient proportional to a negative
power of 1. T belleve that in this event the corresponding collision
process either really is unobservably small in any large volume
(in comparison with related competing processes), or at most has
a laboratory system rate @(i - f) proportlonal to T; it also is
possible that a predicted w proportional tcﬂ/ , z2 > 0, neans
simply that the process  under examination is essentially meaningless
within the theoretical formulation adopted. In either case, the
above rules probably are not applicable. It also seems réasonable

i\

that reaction coefficients w which really are physically R%oportional to
T“z, z > 0, correspond to processes which-~-in the particuI;r theoretical

formulation adopted--depend on parts of 5.(+)(£) decreasing more

rapidly at large r than does the relevant free-space Green's functiem

J(+) -(3(7 - 1)-1]/2,
F

the number of independent aggregates moving outward to infinity in the

; here J is

G (r r '), i.e., more rapidly than T

laboratory system [ﬁ = 2 in a three~particle collision resulting in
formation of bound states ujQzlz) as, e.g., in Eq. (17ai], and G T
has the dimensionality of the center of mass frame free space Green's
function for a system of J elementary particles. Needless to say, I
have not proved the immediately preceding assertion concerning w ~ 1 =,
z > 0; we have seen, however, that §~functions in transition amplitudes
generally lead to w proportional to positive powers of T, and seem to
be associated with terms in Ei(+)(£? decreasing less rapidly than the

relevant free space Green's function EFJ¢+)QE;§f) [}ecall the rules cited

at the end of subsection 4.1.3],



168

4.2.2 Double Scattering Contributions

In this subsection I shall discuss the volume dependence
implied by the 8-functions (135). To begin with, the briefest
consideration of the contributions made by these §-functions to
w and w of (121b) and klZ?b) makes it evident that there is little hope
of being able to compute precisely the anemalous t-dependences these

§~functions yield. It is easily seen that the S—functions (135) make

contributions to G(i + f) proportional to T1/3, but the precise

magnitudes of these contributions are essentially incalculable.

To make these last assertions more explicit, suppose I write,

as in Eqs. (146) -(147),

S(k ] k I)E (k Q)—I e ix(Ry Q)

21 (158a)

(158bL)
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Then the one-dimensional integral over dx' in (158b) is not as
readily interpretable as the three-dimensional integral over dR'
in (146b). Certainly the integral over dx' in (158b) can be

assumed proportional to some average dimension of t, i.e.,

proportional to 11/3. The proportionality factor is ill-defined,

however, and probably will depend on the shape of the large
volume t. In other words, the best I seem able to do is to

replace (158b) by

l) ,.r'/s (158¢)

“"D-'F miE My l"'IZF le 14

[S(k,; [k, k- \)]2%.6 &k,

where C is an unknown factor, dependent on the shape of the
scattering region t, but not on the magnitude of its volume.
Recalling that (135a) is a contribution to T° of (133b),

and comparing with Eqs. (147) - (148), one sees that insertion

of T into (127b) will yield a w(i -+ f) containing terms surely

1/3

proportional to T » but with unknown coefficients dependent

on the shape of 1. The corresponding double scattering

4/3

contributions to w(i + f) will be proportional to t , using

the still applicable (144). I add that the rules cited at the

end of subsection #.1: 3zuowssiake: 4 trevident that/ivhen: a partsdf

¢i(+)(£) decreases like px/Z p_4 along Xe o Nops X > 0, the

associated contribution to w(i + f) will be proportional to

rx/B; equivalently, when a part of 316+)(§) decreases like

o y/2 o -3/2 along
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\.; -
. ?‘- y‘O!.B’

y/3

the associated contribution to w(i - f) will be proportional
to T , assuming y > 0.

I now show that this T4/3 dependence of double-scattering
contributions to w(i + f)--like the r2 dependence of two-body
scattering contributions to w(i - f) discussed in subsection 4.2.1--
is physically understandable and, in fact, to be expected. As in
the case of true three-body collisions, in a large volume 1
containing131 particles o, a = 1, 2, 3, the double-scattering rate
corresponding to (135b)--namely [recall the discussion of Lgs.

(136) -~ (139)] the average number of times per second that a two-
body scattering event between 1 and 2 is followed by a two-body
scattering between 2 and 3--will be precisely iigﬁzﬁs times the
corresponding rate when T contains a single particle of each
species. The desired double~scattering rate in this latter
situation will be the integral--over &ll possible intermediate
momentav&z' resulting from the first scattering-—~of the product
between the rate at which 1, 2 scatterings producelkz' and the
probability that particle 2 will scatter from 3 as it moves through
the volume T with momentunlbz'. This latter probability is

N e -
= L023/T, where @,, is the cross section for two-body scattering

23
of 2 by 3, and L is some average dimension of 1, depending on the
site of the first scattering, the direction Of.§2" the shape cf
T, etc.; evidently L523 is an estimate of the volume wherein
scattering of 2 by 3 can occur as 2 moves through t. The rate of
1, 2 scatterings for a single pair 1, 2 in t is given by (154).

Therefore, after performing all the complicated averages, the

desired double scattering rate ﬁd'(12, 23) with omne particle of
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each species in 1 will turn out to be

A ~ (z) _53%
- (159a)

,T'

where C again is an effectively unknown factor, dependent on the

shape of the scattering region 7, but not on the magnitude of its
volume. llere ﬁd'(lz, 23) represents the double-scattering contribution
to the probability current flow when the incident wave is wi' of
(156a). Hence the corresponding contribution to w(i + £) of (121b)
must be pronortional to 131-5/3 = 14/3, with a shape-dependent factor
C, as found in the preceding paragraph beneath (158c). The

corresponding observed double scattering rate ﬁd(12, 23) when

P
T contains Na particles of each specles will be

AN A A

Ay(12,23) = N, Nz“a'wd(u 23) 2 NN, N, C ™3 ason)

T want to contrast this result (159b) for the §-functions
(135) with the corresponding result in subsection 4.2.1 for the
§-function (130c¢). In the case of the S-functions (135) the
computed w(i -+ £) using Yy of (21a) has terms proportional to

14/3; to thesc terms will correspond observed laboratory frarme



172
scattering rates &(i + £) proportional to NlNZN3 and to TA/B‘
Tor the §-function (130c) on the other hand, though the computed
w(i > f) using wi of (21a) is proportional to 12, the corresponding
observable laboratory frame ®(i + f) is proportional merely to 1,
as well as mercly to NINZ (being independent of N3). Mote also
that the experimentalist attem»ting te measure the true three-body
elastic scattering coefficient by crossing three beams (let's
ignore the present utter infeasibility of such an experiment) will
have to avoid placing his coincidence counters at d;rections and
distancos corresponding to vanishing of the arguments of the
§ function (135b) and its analogues, if he wishes to avoid
measuring double scattering rather than true three-body scattering.

Of course, he also must avoid counter locations corresponding to a

single purely two-body scattering.
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4.3 Truly Three-Body Scattering

I return now to our original objective of determining the physical
three-body w(i + f), i.e., to the problem of finding expressions for the

true three~body matrix elements < fljfli > of Eq. (4). It is argued in

s(+)
i

(69) from triple and higher rescattering processes (namely, from processes

subsection 4.3.1 immediately below that the contributions to 3 of

involving any number n > 3 of successive purely two-body collisions
between pairs of the three particles 1, 2, 3) behave asymptotically like

- () -~y = - -
GF( (Eﬁzf;E) as r + = along essentially all.gf which keep no 0 finite.

In other words, as this chapter (especially in its introduction and in
subsection 4.1.3) has made abundantly clear, such n > 3 rescattering
processes legitimately can be termed 'truly three-body'', and are expected
to contribute neither §-functions to Ts(gi +-5f) of (133b) nor anomalous
1-dependences to w(i - f). A direct way of attaining our desired

objective, therefore, is to develope a procedure for
subtracting the double-scattering contributions to 5.8(+)of (c9),
i

3 tH

thereby lLopefully obtaining @i If tiis could be done, one

) e T w || T

should be able to compute lim 9,
1 A ﬂf’

[%]

therewith
. st .
determining T (ki > bf)‘ln closed form; correspondingly, using
the center of mass analogues of (105) - (106) , one would have a
closed form expression for the true (or physical) three-body elastic

scattering transition operator it introduced in Chapter 1. I add

that because the shape-dependent factor C in Eq. (158c) is essentially
incalculable, there seems to be no practical way to obtain the theoretical

4/3

physical three-body w(i > £) by subtraction of 7t contributions from
the w(i -+ f) computed using Ts(ki *‘bf) of (133b). Thus, to obtain
the physical w(i > f), the necessary subtraction of non-three-body

contributions must be performed before carrying out the probability
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current flow computations and §-function reinterpretations

discussed in sections 4.1 -~ 4.2. The experimentalist, on the other
hand, actually might be able to perform this subtraction by varying the
scattering volume while keeping its shape constant, thus in effect

determining the shape dependent factor C empirically.
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4.3.1 Subtraction of Double Scattering Terms

Although there is no obvious reason why it should be impossible

to do so, I have not been able to perform the desired subtraction of

s(+)
i

to this section. The difficulty lies in the need not to subtract too

double scattering contributions to ¥ described in the introduction

much; otherwise there would be no problem. The two-body scattering

§-function appearing as a multiplicative factor in (130c) has its origin
1K12°%2
in the plane wave factor e

(+)
1

- (+),- - - - - -
term ¢12 )(E? fails to behave like GF(E;E') as 5 + o along v

s B
in the ¢, [ﬁq. (72i] part of
o But the presence of this plane wave factor means the entire

£ corresponding
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t(+)

to elastic scattering, so that in seeking §i one assuredly

can subtract the entire term 512(+) from Ei(+) [recall the discussion
preceding Eq. (119)]. However, the double-scattering ¢-functions
(135), which appear as additive components of T (Ei > lﬁf) .

= S(+).

correspondingly arise from additive components of @i To

obtain Eité+) from 5136+), one must subtract from 515<+)Qg) all

terms behaving asymptotically like p 2 a8 I+ = along elastic

scattering v,., but--as is clear from the rules and discussion at

f’
the end of subsection 4.13~-one must retain in Eit(+)(i) all Cout~
going) terms in 518(+)(§) behaving asymptotically like p _5/2,

To make more explicit the difficulty of performing this
delicate subtraction, let me indicate the results of one reasonable
attempt to single out the double-scattering terms im 518(+).
According to subsection E.3.2, the p -2 contribution in the
5(*)V23312<f) part of Eis(+) [Eq. (69)4’18 contained entirely
in

~ (1) FS2 + -
Goa Vis &, =-650 23{)&,,.\ 6 (E+ie) 'Z/qfi(é)}

£->0

et e g ()

V ‘,”Q‘; r‘z (160)

14

recalling the center of mass versions of Eqs. (60) and {72). Therefore

I will perform an iteration on Eq. (69), as follows. In the Yy
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terms of (67¢) use the second equality in (63b), proceeding as in

Egs. (64) - (67c), and similarly for the Vay and Vi, terss in

(67c). Then, after taking the limit € > 0, one finds

4 (+) A(+) A(H) a4 A (D
.= + +
i i 513 @ = 42 . -+ él (161a)
where
4+ (+) [ (+) (+>]
- - (161b)
@ a3 G23 Vza q?lz + @ 31

31 31

) )
@,H _ GH [@-H) C_Eg)] (161c)

@A(’l’) - GH’) V‘z [@H‘) é(-'-) (1614)

12

and where the result of double iteration and subtraction [on the

original formula (52a) for Y, (+)] is
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8, -0 L)% (B )]

The center of mass version of (162) involves no divergent integrals,
and is the desired iteration of (62); obviously, I could have
obtained tiic same result by iterating directly on (69), using the

center of mass versions of LEgs. (63).

S() -2 ;-—)m

Because ¢ sz decreases no less slowly than Py as

alonyg # v g it can be seen from the arguments at the end of

Section E.2 that interchange of order of integration and limit

‘5 + o || g{ is justified in the integrals (162) for & d(+)( ),

except possibly along certain snecial v As section E.2 explains,

~£°
it has not been shown that these 'special gf

have not ruled out the possibility that suchlgf occur. However,

really exist; we merely

the discussion in subsection 4.3.2 below strongly indicates that
such special if [even if they actually occur] are inconsequential
for the purposes of this work. Therefore we infer that for our

present purposes interchange of order of integration and limit

> || v, in (162) is justified; correspondingly, we may conclude

=572

r~f

d(+)

that @ is outgoing and decreases no less rapidly than 0

as r > II Nes except possibly for these same special inconsequential

Ef' In other words, it appears legitimate to conclude that the
- s(+
anomalously propagating double-scattering contributions to @is( ) all

s(+) = s(+) = s(+)
23 %31 and ¢,,

these terms from 3is(+) should leave a 51

are contained in @ ; thus subtracting

d(+)

which represents true

three-body scattering only.
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On the other hand, I see no reason to think that ¢uBS( )

represent anomalous double scattering only, i.e., contain no parts

t(+)_

{ For one thing, subsection E.3.2

which should be included in ¢

can be seen to imply

_(‘;(ﬂ (+> v, @m E,Gm (+>} @Lﬂ (163)
F

-5/2

decreases no less rapidly than p But this result immediately

s(+)
23

namely the left side of (163)--belonging in ait(+) (because it is
-5/2

means that ¢ on the right side of (16la) contains a part--—

contribution to the left side of (163)

is everywhere incoming); in other words, aid(+) of (162) does not

(+) t(+)
i i

Alternatively, Eq. (163) means

2w, TW = Ko 3, o Fui T
G::) vzé@tz = ._GF(+> Vz.a e ~" 2{%@(%/%}1)]\/ (164a)

most unlikely that the p

contain all parts of ® contributing to ¢

- =2 , . . .
contains the entire o contribution in (160), just as

é( )V 3 (+)

23712 )
in (164a) py gF(+) would not retain the entire

- =2 . . .
(160) contains the entire p contribution in

However, replacing g12(+)

0 "2 contribution. Sections £.2 — E.3 show the p "2 pehavior
in (164a) stems from the fact that the integral (73b) behaves like

-1

12 as r.,, > «; evidently

r 212

(164b)

ik -y
[ (H U”} 2L L ' , '
gn, F 12. ~n_0§z~u%f: (wz):rmﬁ/gl("zsl)
"

APt N o MR A
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also behaves 1like rlz_l as I, + o, recognizing that VlZ is short
range. In any event, even if one could find some iteration of
(164a) that retained all p "2 terms in an integral of convenient
or transparent form, there remains the complication that the o -2
contributicn to (160) [i.e., to (164a)] was obtained in section E.3
by application of the principle of stationary phase. It readily

- =9 .
can he scen that this method of obtaining the o contribution

amounts to computing the leading term in an expansion in powers of

0 _1/2. Therefores, along with the p -2 contribution to (160) or

(164b) , or to any p  -retaining iteration thereof, there generally
. - ~5/2 e

will be p contributions .

It follows (from the material presented thus far in this
subsection) that it is very difficult to find any set of scattering

terms--or, equivalently, any set of scattering diagrams--which represent

+

the anomalous double scattering part of ¢ without any truly

three-body scattering contributions, and which therefore could be

s(+) to yield the entire ¢1t< )

id(+) of (162)--which, according

to the penultimate paragraph above lies wholly in Eit(+)--can be

subtracted from ¢ In this

connection it is worth noting that o

thought to result from scattering processes involving no less than

three successive purely two-body collisions. It has been explained

above that interchange of order of integration and limit r + = || Ef
in (162) is justified for essentially .all v # Vv Vog’ thus we obtain
as, e.g., in Eqs. (133)
. d(+) e J d(
Avwn @t (})=-C (E) T (165a)

§'€>00“2*' ? 52
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RO (e

¥ (Val uz @ﬂ )(’7") (Vuz 23\)@8‘*)(;") ] (165b)

Now consider, e.g., the first term on the right side of (165b); in

particular, consider the contribution to \l’f( =) V235125( ) made by
(=)= (=)=

- - (~-)*
the ¥oag part of ‘i‘ s where ¥oar is given by Eq. (136).
From Eq. (161d),

T ) * s(-n - \-u-) ) T
/‘?‘23{-’ 23 ’!P.zngZB G [@ @ ] (166a)

The first term on the right side of (166a) can be ®eexpressed, as in

Egqs. (137), in the intexpretable. form

> P52
T V.6,V 8,

234 2»5

"",&/m/@/ (E‘He,)v 6 (E+I€>\/ G (E1—ae)\/ fq)’

£E>0

- bim T

g0 ~R3f

(Eﬂ& V G (E-ni)T(EhE)G(E—&-cg)T(EHE,)"4}’

— - —_—

= fim /lp’*T G I :/_: /i}—f (166b)

£-50 -f ~23  F
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where EQB and EF are evaluated at the complex energy E + ie. The

integral (166b) obviously corresponds to a diagram wherein there are

three successive purely two-body scatterings: first of the pair

3, 1; next of the pair 1, 2; and finally of the pair 2, 3. Similar

results hold for the other terms on the right sides of (165b) and

(166a) . Moreover, further iterations of Wf(_)* in (165b), or, e.g.,
T = s(=)* 8 (H)

ROLNIY el
replacing Wf by @12f in Wf V23¢12‘_ , yields

integrals corresponding to even higher order scattering diagrams.
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4.3.2 Volume Dependence of Triple Scattering Contributions

The integrals (165b) are convergent, except possibly along
special directionsnkf [ﬁor given‘ki] where some of the integrals
in (165b) may be logarithmically divergent [?ee section B.ZE.
However, there is no reason to think that the center of mass

frame probability current flow 3’6f Eqs. (127)--when integrated

over an infinitesimal range dk. in the vicinity of these special

£
(here meaning isolated) Bf where Td(gi > hf) from (165b) is
undefined--~receives finite contributions from these comparatively
weak divergences [see section B.2]. Thus the possible existence
of these special Ef seemingly does not require reinterpretations
along the lines of section 4.2, i.e., seemingly does not introduce
any anomalously t-dependent contributions into the reaction
coefficient w(i + f). Moreover, there is no indication that the

integrals (165b) contain any other 5 -dependent parts which--after

£
squaring--will be non-integrable over dEf {fecall the form of Eq.

(127c)]. Therefore, it does seem to be true that the doubly-
iterated Eid(+)gg) of (162)--comprising contributions from
numbers n > 3 of successive two-body collisions--in essence behaves

asymptotically like EF(+)(£;E';E) and entirely represents truly

three-body scattering [és concluded in subsection 4.3.1|. I remark

that, as in the case of the special E{ discussed in subsection 4.3.1,

it has not been shown that the special k. of the present subsection

f
actually exist; rather, because their effects apparently are
inconsequential for the purposes of this work, it is not worth the very
considerable effort which would be required to decide whether or

not the logarithmic divergences of (165b) ever can occur at physically

allowed reallg Nor is there any evidence that the possible existance

f.
of real or imaginary values of Ef where (165b) is logarithmically
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divergent should be associated with actual singularities of
ngbi -> Ef), computed via analytic continuation [és a function
of‘Ef for fixed Eij from values of Td(gi > kf) for which the
integrals (165b) surely are well-behaved; it is conceivable, for
ingtance, that the logarithmic divergences of the integrals (165b)
at special 5f have no physical significance, but simply are
manifestations of the fact that the interchange of order of
integration and limitAi'* w || gf in (162) is not justified at

special y It does seem worthwhile to stress--much as in the

£
discussion following Eq. (48)--that the integrals (165b) are convergent
except possibly on an inconsequential subset of the allowed real
k¢, whereas the integrals (133b) always are divergent, although
it is true that the divergences in (133b) arise from §-functions
(135) which can be considered non-contributory ekéept when their
arguments vanish.

To further confirm our conclusion that 5id(+) represents
truly three-body scattering, I now shall demonstrate--by arguments
along the lines of subsections 4.2.1 - 4.2.2--that three or more
successive binary collisions cannot make contributions to the
three-body reaction coefficient w(i » f) which increase as any positive
power of 1. Consider, e.g., the sequence of three two-body scatterings:
1, 2 collide; 2, 3 collide; 3, 1 collide. Then, as in subsection 4.2.2,
I first compufe the reaction rate for the above sequence under the
circumstances that the volume 1 contains precisely one particla of
each species o. After the collision between 2 and 3, vhenever it
may take place, the laboratory frame speed and direction with which
3 moves through 1 are strictly correlated. It follows that in
order to rescatter from particle 1--whose trajectory has Leen Iimed

Ly the first collision bLetween 1 and 2--particle 2 nust be scattered
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vy 2 dinte a very narrow solid augle, of the order Ogl/L“ where

., N~ =13 . .
L= / . ience, referring to (15%a), the postulated sequence of

thiree binary collisions will Lave the rate

(IZ 23;31) 2 <w“’ L Taa :_§!> ~ T3 (167)
1' L} av

This result for &t' corresponds to the incident wave wi' of (156a),
so that the laboratory frame w(i = f£) is proportional to

3. -7/3 2/3 ., : . .
71 7/ = 1 /J, implying this sequence of three binary collisions

makes a contribution to w(i + £) which is proportional to 1*1/3.
Therefere, recalling the discussiou at tl.e end of subsection 4.2.1,

it is reasonable to infer that successions of n 3_5 purely two-bodf
scatterings, if observable at all in a large volume 1, will be
indistinguishable from {_and apparently should be included in] what

I have termed truly three-body scattering. Note that the diagram
corresponding to (166b) represents successive two-body scatterings in
which energy is not necessarily conserved in the intermediate states
(e.g., between the first 3,1 scattering and the second 1,2 scattering);
the physical purely two-body scatterings yielding the just estimated
t—ll3 contribution to w(i =+ f) are energy-comserving, and therefore are

only a subset of the whole class of three successive two-body scatterings

represented by the diagram corresponding to (166b) [see subsection 5,3,3].
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5. THE PHYSId\L THREE ~BODY TRANS\IlTIO‘N ‘AMI)’LITUDE

This, our final chapter, is concerned with an attempt to actually
determine a useful expression for the physical three-body transition
amplitude Ttghi +-bf). As section 5.1 explains, attempting to find
Tt(ki +»kf) using mathematically defensible procedures is impractical; l
to avoid extremely difficult and complicated calculations, employment
of some not obviously justified mathematical short cuts seems necessary.
One such plausible attemLt‘to determine Tt(ki > kf) actually is carried
out in section 5.1. The formula for Tt(ki > Ef) obtained in this fashion
is shown to be consistent with detailed balancing in section 5,2, while
its interpretation is discussed in section 5.3. Section 5.3 also compares
the configuration space expression for Tt(hi -> Ef)——as well as for the
entire Tgbi + k_)--with the corresponding expressions inferred via the

~f

more customary momentum space procedures.
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5.1lperivation by Subtraction of §-Functions

Among the concerns of the preceding section has been the possibility

(+)

of expressing 515 in the form

} + %ﬁ iﬂi ¥ (168)

+) G

- a
where @i

such as anomalous double scattering, but which is wholly dewoid of any

is that part of 5is which represents unwanted contributions

truly three-body scattering contributions. In fact, subsection 4.3.1

has examined--and found to be impractical though not obviously impossible--

a(+)

one suggested means of constructing 51

, namely by seeking a set of

scattering diagrams which separate out the anomalous double scattering

s(+)

terms from the truly three-body contributions to 51 . Alternatively,

one could try to find a closed form analytic expression for aia(+)g§)

by carrying through the calculation~-of the asymptotic form of 515(+)€£)"’
outlined in section E.3. A glance at subsection E.3.1, however--especially
Eq. (E40b) and the discussion immediately thereafter--makes it evident

a(+)
i

that this suggested procedure for finding ) also is not very

practical, though again not obviousiy impossible. It is understood, of
course, that merely completing the calculation initiated with Eq. (E40Db)
[already an arduous enough task] would be insufficient, because the
asymptotic form resulting from this calculation will be singular at

512 ¢ large p;

s{+)
i

; = 0, and will include contributions behaving as o

t(+)

to correctly yield 5i , what must be subtracted from @ is an

expression Eia(+)(g) which is finite at % = 0 and has no p =3/2

components at lavrge 5, but whose leading Py -2 part at laxge o is

identical with the leading asymptotic part of 515(+)g§)@
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For many purposes-—e.g., the construction of wvariational principles

for three-body elastic scattering--complete knowledge of the asymptotic

s(+) (38)

behavior of 5i may be essential . On the other hand, it is

conceivable that only partial knowledge of the asymptotic behavior of

= s(+)
Qi
of 5it(+)

scattering amplitude Tt(ki > kf). Thus it may be possible to find

-~in particular, only partial knowledge of the asymptotic behavior

in (168)--can suffice to determine the physical three-body

Tt(ki > Ef) without having to carry through either of the difficult
calculations discussed in the preceding paragraph. It seems clear,
however, that any argument which leads to Tt(ki > gf) while avoiding

-5/2

exact construction of ¢ t(-’-)(if‘)——or of its leading 5 part at the

i
very least--will have to involve some mathematically questionable steps,
i.e., will lead to a possibly erroneous result for ft. Nevertheless,
because determination of Tt(gi -+ Ef) has been a major objective of this
work [recall our opening remarks in chapter 1], I now shall describe
an attempt to deduce Tt(bi > gf) via a plausible argument which indeed
does avoid finding first the leading p -5/2 part of Eit(+)(§).

We have seen that Ts(ki +»gf) of (133b) contains S~functions (135),
ascribable to the fact that the interchange of order of integration
and limit £‘+ o in (132) was unjustified; this interchange led to the
erroneous assertion (133a), whereas actually Eis(+)g§) contains

contributions behaving like p 2 at large p. Suppose, therefore I am

able to express T of Eqs. (133) in the form
/S ol o -y A
T (@ﬁﬁi@;.& =T (\%‘;’?%{-) +T ('%%f”%ﬁf) (1692)

where Tt is wholly composed of convergent integrals [except possibly
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for inconsequential logarithmic divergences at specialfgf, recall
subsection 4.3.2], whereas T? is a sum of terms proportional to
§-functions and thus has no finite part. Then from the entire body of
this work, especially the rules and discussion at the end of subsection
4.1.3, it seems reasonable to infer that Ta(gi +'5f) in (169a) represents
the contribution to TS(Ei - Ef) from that part of 5is(+)gi) which behaves

~-5/2

like p -2 at large p, but which has no p components at large p.

In otﬁer words, it seems reasonable to conclude that Tani +‘5f) is the
contribution to TS(Ei - Ef) made gy Eia(+)(2) of (168), implying

Ttggi +‘5f) of (169a) will be the desired entire truly three-body
scattering amplitude associated with Eit(+)(g). 1 stress that this
conclusion, though reasonable enough, depends on a number of unproved
assumptions. For instance, I am assuming that any mathematically well-

-5/2

behaved o compoment of & s(+)€g)——that is to say, any component

i
of Eis(+)(;) which is finite at % = (0 and propagates to infinity without

restriction in the six—dimensionalfg—space [recall the discussion at the
end of subsection 4.1.3]--indeed is everywhere outgoing, i.e., behaves

everywhere at infinity like the outgoing G (+)€g;g'), not like the incoming

F

free space Green's function G (—)(E;g'). 1 also am assuming that the

F
unjustified interchange of order of integration and limit r>- |I pr

in (132) is not so wrong that (169a) becomes a quite misleading indication
of the actual form of‘zta Without making these and similar assumptions,
there is little basis for arguing that Ttgsi +i§f) obtained from (169a)
and (133b) can be identified with the "truly" thrée-body transition
amplitudes of Eqs. (3) - (4). Of course, explicit verification of these

assumptions would involve finding closed form amnalytic expressions for

5,2

i (r) and 5it(+)Q§), an impractical task [as explained at the beginning

of this subsection] whose performance--if achieved--simultaneously would
obviate the need for computing the physical Ttggi +3§f) via the present

dubious argument.
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Grantinp the legitimacy of using (133b) and (16Ya), ft(Ki > kf)

is found as follows. In the terms on the right side of (133b) involving

(=)*,
the product Wf 12, use

T ()% (=)* = (+)
/q{ = gz.g_ ,@ (.Vz,a 3; G (169b)

which is the time~reversed analogue of (86), written in the notational
style of (100b) or (105d), i.e., with the Green's function on the right,
as here will be convenient; Eq. (169b) also can be inferred directly
from the center of mass analogue of the second equality in (65b), via
the methods of chapter 3. Furthermore, in the W ¢ ) 23 and Wf(_) 731
terms of (133b), use respectively the 2,3 and 3,1 analogues of (169b).
Then, employing Eqs. (161) as well, one obtains

Ththoh) = (07 [T @ L8 Bl

2;3'?
;';;(zf') [ ("‘) EE‘;':(S:’)]
TN+ 3] e
+ T,k :)

in place of (133b), where qugi - Ef)‘is given by (165b). The same Eq.
(169c) is obtained from the interchange of order of integration and
lim ¢ »> = II-Xf in the right sides of Eqs. (161) - (162); of course,

this interchange--though justified in Eq. (162) [recall the discussion
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s(+)
afB

[recall the discussion of Eqs. (132) - (135)].

in subsection 4.3.1]--is unjustified in the ¢ terms of Eqs. (161)

Returning now to the discussion of Eqs. (135) - (137) in subsection
4.1.3, one sees from comparison of Eqs. (169c¢) and (133b) that all the

double-scattering S-functions of type (135) contributing to nggi > k{)

are entirely contained in the integral on the right side of (169c¢); in

particular, (a term proportional to) the specific §-function (135a)

(=)*, = ()
£ V23%12

consider this term, therefore. Using Eqs. (72), (105b) and (136), one

arises entirely from the ?23 term in (169c). Let us

finds
- -iK.* g
¥ (+) ~23f <23 (¥
T L
Iq'yzsf 33@ da\rﬁd & ,u'gy;f(”la ~Z3f)
| 9
xV €
23("'13) ?'z(ﬂz)k[zg,\)
where u is defined a )* g 12 i
923cf s was u_ in Eq. (129a), i.e.,
-1 Y 2
)¥* ~23¢ ~23 -
Mzscf(t133 ~z3f)=e + zzf(rzs3 ~23f)
(170b)
with ¢23f(-)* given by the 2,3 analogue of (105¢c). Replacing the

integration variable 223 by,£1

factorizes [compare Eqs. (E25b) -~ (E26b)] into a product of two independent

29 the dix~dimensional integral (170a)

three~dimensional integrals, namely

V \e 92{ (170c)

- -Q
72 B () i .
dr 2 P\t k J dvzsiu'zacf ~13> ~zg ~ 3

~2 12\~ o~ 120
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where in this chapter I henceforth shall employ the notatiom [compare

(E26¢c)]

L0
&
in

«ﬁ\'-"-K +'W‘|K

- ~23f —_—— a2
’Wt,-HM;_’
(171a)
Qo =8 =_Ma + .
mrm, ~23F I
along with
C = + M K,..
~ ~23 ~ ML
£ mgwm,
(171b)
D = M,
~ Y'52':3{"'- 314
My+ M3

The integral over 4523 in (170c¢) is convergent, and in fact can be
identified with a matrix element of L3 [see section E.4]. The integral
over 4512 in (170c) fails to convergé, and in fact contains a contribution
proportional to the §-function (135a), as was originally shown in section
B.2; the exact magnitude of this d-function (135a) contribution to (170c¢),
as well as of a second related §-function contribution, is computed in
section E.4.

Specifically, section E.4 shows that
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Lo’ A

-1 (+)
dt,e TP, (k)
’-fa; AP, i 1
J I‘z{e CPW, ,‘2>~i1¢)+ ‘QAQQ < wuz.% ni ~l2t>
-tAY' \RY‘ (172a)
X [8L~l?- AL B %W P )—————«-}

Vi Ay,
- 'L&n. <k

0

”?d?? ef’(k’lzL“A)y;z,
mwA}-vsz«, ~|2,«> 12
-*e

P ik tR) Y

+ "')*‘7-< Aﬂzﬁiﬂmim:) Owile

0
where/g12 = Ti9V%a95 A= AXA; while the truly two-body transition operators
(third particle completely irrelevant and absent)’gasi, and their matrix

elements, are defined by Eqs. (13le) - (131f), together with the shorthand

notation

(172b)

"
C‘F
o~
_m
pad
Seunsat”
i
ct
"]
T
L
L
g~
—~
(2]

~20 M
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The notation (172¢), though not employed in (172a), will be made use of

below.

In (172a) integrals of the individual terms, e.g. of the term

««12 +) (¢
12 12’ 121

However, the 8-function terms inside the braces in (1722} cancel the

iry, 5 (+)(
ﬂ12 P121

) originally appearing in (170c), do not converge.

)3

leading (v _2) terms in the asymptotic expansion of e

12

in other words, provided it is treated as a single r. ~dependent functionm,

I32 :
1lkyyy * ATy,

the quantity within the braces in (172a) is of order rlzm

at large r Consequently the integral involving the braces in (172a)

12°

fails to converge only at the special values of’gf satisfying A2 = klzi2

for given Ei’ whereas the left side of (172a) [the first integral factor

in (170c¢) ] diverges at all ALk The remaining pair of one-dimensional

~121°
integrals on the right side of (172a)~-multiplying the matrix elements

< k “5

12124l 101 K125 12¢%l €124

divergent, i.e., strictly speaking are mathematically undefined. To

> and < - k ‘klzi > respectively-—-are obviously
accomplish our present objective of finding an expression for Tt(gi -+ gf)
of (169a), it is necessary to somehow reinterpret these last two divergent
integrals on the right side of (172a). There is no doubt but that the
convergent first integral on the riéht side of (172a) contvibutes wholly

to Tt(bi -+ kf). The problem is to decide whether or not the lasg two
integrals on the right side of (172a) also contribute to Tt{Ei +’Ef);
referring to the discussion following Eq. (16%9a), this problem amounts

to deciding whether or not the integrals in question plausibly can be

interpreted as a sum of terms proportional to S~functions, with no

regidual finite parts.
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5.1.1 Formula for T (k, » k.)
1 7 X5

It 1s argued in section E.4 that the relations

© Lk .

dee ~ = R+ 0 r3e
o R :
© ik

dee . TTOkR) £ =0 (173b)
0

provide a plausible interpretation--as a function of k--of the divergest
integral on the left sides of Eqs. (173). Eqs. (173) are consistent with

the more customary formula(éz)

Jﬁxe&m = ﬁg(h) + 1 P

(174a)
o k ]

where P signifies the principal part when integrated over k, i.e., where

it is asserted that for any reasonably wedl-behaved function f£(k)

0 ~00
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Use of Eqs. (173) in (172a) specifies the magnitudes of the §-function

=)* = ()
23¢  V23%12

(% 2 @ =8
how to express this W23f V23®12 part of T Qgi +‘§f) in the form

(169a). Thus [see section E.4] we conclude from Eqs. (169a) and (169c)

contributions to ¥ of (170a), thereby making it obvious

that

T' (k% Q)= Tk &+ T z(‘e N )*’:[;;ac(%?kf)

-t
+T +
3:23 wf> ‘3(:2( ~i ”'F (175a)
Toa (k >k ) + Tmas(kf’ ﬁ%f-)
where for A% # k1212
23”‘ _Lra. ,.(P(+)( )
~ <ﬁ.ls&l tl%l —B >g { 2 W n.c,
L e i et ot ot e k - > 5‘ _bAY;),
g Ldz.u ;Jt.u 5 [
+ ‘_'F_;% r‘\_ LL A f'L {
CAr,
IR E___.]
- AL

12 }ﬂ B (’p’\zlya E tlziibm}w (’ks al’n\?mlgub]
+#_< i #I >[ A (%5 SQE_R) E @e‘asz R)

" (175Db)



197

2

2
while for C“ # k31i

:gl(k:,"?k;)
e T oy, 8w
- <£m|tmtp>§dg,%e Y (J,,% 0)

R v \
+ L/“stﬂ <ﬁ23,2,?~)31lf3"°l%“°
h" LEY!

>[5(,;.+" il

S(p3 =) ]

-3, l“’snués/i? <-E31L£6}f31l‘%3ﬂ>

L. H
20 gl o) ST Ll
(. C (ks C) C(ksi+C)
(175¢)
In Eqs. (175) we employ the notation (172¢), along with L3; = T3q¥aps
(+)

C = Cu ; the two-particke:s attered waves § are given by Eqs. (73),
~ HC R w8 ——

=t =t
as always. The quantities T3123 s le31 of Eqs. (175) are cyclic
'-t

permutations of T2312 3 the quantities T3112 , 1223 are cyclic permutations

of Tt Evidently T2312(k > k ) is the contribution to Tt(k +k )

2331 °
7. (O, 5 ),
made by Y¥,,. 23?22 idn{{169¢); 'lT23311dsthhecqutr&buténnmoff[' madde
* -
byt W23£( =) 23 33(+). n (175b), as in its generating expression (172a),

t integrals of the individual terns wﬁthin the btaces [e.g., of the term
e ) 1512 "012("') ] do mot converge, but the entire integral in (175b) does

converge provided the quantity within the braces is treated as a single

ilz-dependent function. Eq. (173a) means that the divergent integrals

in (172’3) have residual fimite parts in addition to their S-function

parts from (173b); these residual parts are the terms not under the integral

sign in (175b). Eq. (175b) does not specify %;312&%%%%%)3&%&%*ﬁk"iﬁii

(although of course only A = k can occur for .;;r_."eal ki, k_,wWhezesd>>00
_ 121 R s o
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by definition); in fact, as was the case for the corresponding integral

in (172a), at A = * k the integral in (175b) 1is logarithmically divergent,

121
i.e., strictly speaking is mathematically undefined. That these deficiencies
of (175b) at A = klZi are inconsequential for the purpose of this
publication has been explained in subsection 4.3.2; in any event, the
experimenter attempting to measure truly three-body scattering would not

be placing his counters at locations consistent with A = k because

121’
these locations also are those at which the argument of the é-function
(135a) vanishes [recall the remarks at the end of subsection 4.2.2].
The rather awkward form of the right side of (175b) actually reduces to
a quite convenient and readily interpretable expression for T T2312 Isee
subsection 5.2.3 below]. Similar remarks [to those of this paragraph]
pertain to Eq. (175c¢), which converges except when C = % k311'
The derivation of Eqs. (175) [section E.4] simultaneously shows that

in (169a)

:r-'a(k'io-)g‘f') = T&;Z(ki—’g{) 233|( )

(k-ak)ﬂ' (’6—)&)

3L

(koky) !m(k 2)

3\2

‘7—3 (1762)

where
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23|2(b "k ) _ﬁ_< NZSf'bZBfI“§><~ klZi}“)A Itﬁzl\ ka> 8(k,2i+A )

- /u‘ﬂh’ <h23{,|t23{.l B ><lR|2l~Al ~|2»HQ;2£> 8('1Q';2,;'_ A) 1760y
R

2531( f> —&"——< Bfl Zﬁf}p7<‘b3h’"°

| fS _ﬂ-(:
th 3n > ( )

a3l

”A’L—L_<RQ5{—)N23 |D>< 3!1"’0‘?51le >8(b’5h C) e

A:}[ L
2

Fa . . .
The quantities T3123, 1231° in (176a) are cyelic permututions of

-a ma . . ma
3112° T1223 are cyclic permutations of T2331.

(k - kf) is the contribution to T= (k - ) made by

53312; the quantities T

Evidently T2

2312
S AL I (+) in (169¢); is the contribution to T made by
23f 2312 ? 2331
7 () 5 ()

23 V2331

In Eq. (176b), only the second S-function on‘the right ean have a
vanishing argument at real k ,kf Referring to Eq. (171a), one sees
explicitly that this second term on the right side of (176b) is proportional
to precisely the §-function (135a) interpreted in 4.1.3. In particular,
Eqs. (137) - (139) and the discussion thereof showed the presence of
the §~function (135a) could be interpreted as resulting from two independeat
successive two-particle scatterings—-namely first particles 1, 2 are

scattered by each other, after which particle 2 is scattered by 3. The

precise form of the 6(k121 - A) term in (176b) is consistent with this
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interpretation, in that this term is proportional to the product of the

truly two-body matrix elements < k fk > and < k.|t

12:%a 18124 K124 Kyael tpael

Indeed, at klZi = A, the final relative momentum klZi!A in the two-body

15121 > associated with the first 1, 2 scattering

- B >,
~

matrix element < ky,.v,|t;,s
is identical with A of (171a), which in turn is idemtical with the intermediate
(after the first scattering) 512 of Eqe. (138) - (139), because--~using

(29) and (138) as well as K, =K, and k., = k.-

~Al ~f ~1f =1
A—:‘—K +  m, K :IRI "YYI‘K +_m, k'—W3K'
~ ot e TR ,Yn'+m§”3‘ M £)
= E‘f (%;ﬁgm) k . (h +k ): /B\z (177a)
/m|+YY1a M+,
Similarly,
~R - —yn ~-K = - m, m
. ;‘n‘;f% AN Wf‘(‘e M) (Ra vty o)
=k M [k Tk =k’ vz (k' +k )=
o /m,q+fm§< ) "3 /mgmgma ~3) ~a3 (177b)

. (177b) shows that--in the G(k12 - A) term of (176b)--the initial
momentum -B in the two-body matrix element < k23flt23f| - B > associated
with the second 2,3 scattering is identical with the intermediate Ko

Moreever, at klZi A this second scattering matrix element < k23f]t23fl B >—
like the first scattering matrix element < k lklZi >-—1is on the

120% ! E121
two-body energy shell {[i.e., B = k23f] because
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2 2 2
A=K +——'Y—“‘—m—2—)K +2m K -K :/_‘Qm (178a)

120 /\(n',',ml’vz?"f ~2e

implies

2 2 2 2
R”= ’Yﬂ3>K +K‘_+2m3 K - K
”ma+m5 - 25 21 fm2+m3 -~ 23§+ ™2t

= Mz M+m, k;-k m,M K,lm (178b)
m, my+My (mrm)(m+m, )
~ m,wmM K
m, (m+m 3)1 =

But conservation of the total energy of the three particles, along with

Ky = K;» further implies [via Eq. (35)] that

2 2 2 5
kl%’f* + K23f = ’k\zt + KD_L (178¢)

Moz Mir Mz 3w

2 in (178b) immediately yields B2 = k 2

Use of Eq. (178¢) to eliminate k 23§

121
[recalling Eqs. (29e) and (29f)].

Similar considerations to those of the preceding two paragraphs
pertain to the cyclie permutations of (176b), as well as to (176c) and
its cyclic permutations. In particular, the precise form of the

6(k311 - C) term in (176c) is consistent with the interpretation that this
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term results from the purely two-particle scattering of 3 and 1, followed
by a second purely two-particle scattering of 3 by 2. More specifically,
:C : R i = - .
at kg . it can be seen that: (i) the vector k314% C of (171b)
is identical with the expected intermediate (after the first 3, 1
scattering)‘gél; (i1) the vector D now is identical with the expected
]
intermediate1523,
element multiplying 8(k

(11i) now D = k23f, so that each two-body matrix

314 " C) in (176c) lies on the two-body energy

shell.
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5.2 Detailed Balancing

(39)

From very general time reversal considerations one expects that

the matrix elements of the total three-body transition operator i}[defined

by Eq. (5)] satisfy

_‘f’(‘e.e\g{)' = T(—’E+—>—k-) (179a)

()(a.—%jre ) = :f:t(—k ——>JQ~) (179b)

— ()% —
For purely two-body collisions~-where the integrals Wf( ) Vwi and

+
i

the scattered parts

- %
wf vy of Eqs. (126b) and (131lc) always converge, and where correspondingly

@) (% o) g ()
i s ¢f of Wi s Wf

outgoing--the result (179a) easily is demonstrated

are everywhere
(2) directly from the
formulas (126b) and (131lc). In the g three-body case of present
interest this previous demonstration(z) of (179a) is not applicable, however,
because now the integrals (126b) and (131lc) need not converge, and

- - (=)%
because correspondingly Qi(+) and Qf( )

now are not everywhere outgoing.
The truly three~body amplitudes of Eq. (179b) are expressible in terms

of convergent integrals [as the last section 5.1 has shown], but these
expressions are so complicated that the previous two-body proof(z) of the
reciprocity relation (179a) also is inapplicable to (179b). Thus it is

needful to investigate here whether or not the expressions (175) for

Ttggi +‘gf) really are consistent with the reciprocity relation (179b).
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This investigation is particularly necessary because the formulas (175)
for Tt(§i + Ef) were derived on the basis of some mathematically
questionable (though plausible) manipulations, as discussed in section
5.1. One also could adopt the viewpoint that Eq. (179b) obviously holds
because~-as will be discussed in section 5.3--the formulas (165b) and
(175) for the various component parts of Tt(gi > Kf) reduce to
momentum space matrix elements, for which there presumably are general

proofs(39)

of time reversal invariance; this viewpoint doesn't really
simplify the problem of proving (179b), however, since the proofs of
detailed balance in subsections 5.2.1 -~ 5.2.3 below largely involve
carrying out this reduction of our configuration space expressions for

TF(bi -+ gf) to recognizable momentum space matrix elements.

Recalling (175a), to demonstrate (179b) it is sufficient to show

T (431',_) 'kf) = :rd("jk.p"\’-k') (180a)

2812 A~ ~

:rt ()B“* )R.F) = :f-t ("’EF*%—)E.) (180b)

because (180b) obviously implies the cyclic relatioms

k) - Thbkooh) o
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(180d)
""4,51\)

as well as

=1t
(k. k)= T° (-h>-t)
1223 Y~y ~f 2312 ~f ~a (180e)
Eq. (180e) is obtained from (180b) by replacing Et’ ke with - 5f’ - k4

respectively.
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5.2.,1 Triple and Higher Scattering Terms

First I shall prove (180a) holds, i.e., I shall prove detailed
balancing for those terms in Ttggi -+ Ef) associated with n > 3 successive
two-body scatterings [recall the discussion at the end of subsection
4.3.1]. Using Eq. (165b), one sees (180a) is equivalent to the assertion

that

By )L () 870+, B0

+(V +V ) B k) ]

12
+V )@ S(ﬂ(“&{) N (VS‘*VQ) éz:(“!&) (181)

§ 23 31 T2
+ (\/‘2+V;3)§5&)(4e ]

- ()%
where the notation indicates that ?f( )

limit as € - 0 6f the solution to the center of mass version of the

(=)*

on the left side of (181) is the

Lippmann~Schwinger equation (107a) with wf of (100c), whereas W
the right side of (181) is the limit as € + O of the solution to the

center of mass version of (107a) using

-ik. oy
’w; = ’qf(')',' "'!Si) = € (182a)

IARE

S®) (k) in (181) is the quantity defined by (161d) with

@,
af afi

defined by Eq. (58a) for wi from (21a), whereas aiZiSCf)(*‘kf) is

Similarly ¢121

the understanding that in (161d) the functions ¢ are
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defined by Eqs. (161d) and (58a) using

(4

i
D
?
+

’% = %(X)“%ﬁ = (182b)
Eqs. (182), together with Eqs. (8) and (107a), immediately imply
/@,(")* )R _ = (# /k
f (’A,,i) . @;’ (N,y") (183a)

Similarly, Eqs. (72) - (73) and (105)--along with Eqs. (106) and (160)--

imply

%H’) (-—'k ) _ é(‘)*(%.g) 1309

124 ~L 124

k) =65V, L )+ 37k )= 8k )

2t 2 3 23f ~§ 2¢ "~ (183c)

Thus the right sides of Eqs. (180a) and (181) become
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TUk>-k.)

=[BT e 8y I o

i

where now--as a&lways in the past--the subscript i on the right side of
a matrix element is associated with the incident wave vector‘gi, while

the subscript £ on the left side of a matrix element is associated with

the final wave vector Ef‘
Using the symmetry relation (95), valid for all Green's functions

employed in this work, Eq. (183c) permits rewriting (184a) in the form

d [ F0* zo*
T (-%54%4&) B [(§3|F+§23{-‘>\/3 12 (V Vl)

HE T ETW E2(V_+V )

i+ If/ 23 23

T (¥ (—)* (+> T+
+(§23f IZf) 2) (az 23 ]f@vq‘;

(184b)

In (184b), ?i(+) can be replaced by lim ?i(ﬁ + ie), from (34a);

- )%
correspondingly, recalling Eqs. (60), (72) and (105), ¢12f( ) can be
replaced by

- fim {G (E+1ie) ‘2’{&*} = - fom {’6{: \I:Zéa(ﬁﬂa)} (184¢)

£20 E>o
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Moreover, as written the right side of (184b) is wholly composed of
convergent integrals. According to sections 2.2 and A.8, therefore, it

is legitimate to replace (184b) by

TCk,~k)= Am [ (Y 5 V.G (V+V

~1, €50 3! .’>l 2.3 25 12 IZ( 23 31)

where all Green's functions are evaluated at the same complex energy

X =E + ic. Similarly, the left sides of (180a) and (181) are

Tt k) = fim B (1-VE)[ (Vr V)8,V (6B ) )
VAR AR VJ

¥ (\/|2+ VZB) GSI\/& (—.23 23 2 12 )] /4)’ o
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I stress that Eqs. (185) hold even though the integral (52b) need not
Converge, i.e., even though it is not legitimate to replace ? ¢+ )
- )V]Ei.

I now show that the matrix elements on the right sides of (185a)
and (185b) are identical at every X =E+ ie (¢ > 0), which is sufficient
to demonstrate (180a). Because all the Green's functions in Eqs. (185)
are exponentially decreasing at infinity for € > 0, the orders of
integration in Eqs. (185) [and in subsequent expressions in this subsection]
can be and will be rearranged essentially at will. Moreover, to ease
the notational complexity, for the moment I shall drop the bars
in Eqs. (185), which here introduces no error even though the right
sides of Eqs. (184a) - (1845) are not convergent in the laboratory
system.

In Eq. (185b) use Eqs. (63) to replace, e.g., G(V23 + V31)G12 by
G,, - G. Then [also dropping temperarily the irrelevant lim as € - 0]

12
the matrix element on the right side of (185b) reduces to

/q)j{ (st +\/3))Gl2\/‘2 (GB‘V 3 Gz3v23>
HAVE V6 VAN 6N, 6,y -6 1)

ZEt?ZS 23 23 12

+V[(G *Guz)vxz(esu\!m%—ezav (g G W (\2,\!‘2+63V ) (1862)
(G G >\/ (23 23 szvsz>] /uf/},
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2/%'*{ VG[ (Vlz+vzs)G_%|V5|+( 25+v3u) 2 ,7_‘1'(\/“' ) 23 23]
_v(;\/(vaB‘q-G V )—\Q_G V.GV +G.V, )

i 23 23\ 1212 T3 3 (186b)

a3 23 12 12

-V 6. V. (6 V+(;v)}zqy_t

where in going from (186a) to (186b) I have rearranged the terms in G,
and have noted that V23 + V31 =V - V12, etc. Now in Eq. (186b), use
Eqs. (63) again in the terms involving G, and recall Eq. (77a) as well

as the manipulations in Eqs. (137) and (166b). Then Eq. (186b) further

reduces to

af{v 6,-6)V, + (6-6)V. +(5,-6)V, ]
+{1 v )6 v +6 Vv )+ (T-V)EV+6V)

12 3l 3] 23 23 ~23 2371212 313

a3 a3 12 v

+ (T‘__. ( GV +Gv)}/q)—/i (186¢)
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31 3} 12 12 12 23 23 2%

,q;{vevﬂ- GV +VEV +V 6V,

T (6V+6 v )+ T (6V+6V)

.3\ 3\ 23 2% ~23N TR 313 (1864)
+ T (623\‘/25 &, u)} /L\Y,L

which, recalling our starting point for (18&d) was (185b), implies

finally
:f'd('\eiak)—*-/&}m n*{:l"—-"'f‘ -T =T
~ ~E £>0 £ ~ M 23 A~ 3]
+ TGT +T 6T
~12 F ~ 3 ~12 F ~23
“'T‘é:ﬁ *':‘:é:r (187a)

A similar [to those employed in Eqs. (186a) - (187a)] sequence of
manipulations reduces the right side of (185a) to the right side of

(187a). Therefore, the equality (180a) has been demonstrated.
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It is worth remarking that the changes of sign on the right side
of (187a) are consistent with the expectation that Td(ﬁi + Ef)—-being
the contribution to Tt(gi -+ gf) associated with n > 3 successive two-body
scatterings—-must be identifiable with the matrix element of’g minus all
single and double scattering contributions; these double scattering
contributions, contained in TS(Ei +.%f) of (133b), have been evaluated
in Eqs. (137). Actually, if convergence difficulties are ignored, a
much simpler sequence of iterations than was employed in deriving (187a)

from (165b) yields [see section 5.3 below]

TR= T THE\ — povay Py — - = = - =
= T + T, =T - T,
4 V\Ik \'l/u "L;_ g;-;rll -1- w33 am b -MI).S F 2—51 ’23 GF w3
= 7 = = T% e ‘t-.“ __7” éﬁ-T_.%~V{
_“{’31 6F.j)ﬁ w{“ ':W,g, WILCI‘ . 3 1L F o3
= d ] (187b)
+ T ( 2, T \})
where now EF’iaB are evaluated at real center of mass energy Ei = Ef.

The form of (187b) evidently is consistent with (187a), as asserted.
However, .bacause both the right and left sides of (187b) are composed of
divergent integrals [containing the trivial and non-trivial §-function
contributions which have been discussed in section 4.1], Eq. (187b) is
not a useful formula for actually computing Td(gi - Ef)o Instead, one
must use (187a), or--if one wants to avoid taking the limit € - O--the

original formula (165b).
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I further remark that Eq. (180a) also can be demonstrated by

showing that the right side of (184b) is precisely the expression one

would deduce for T (,15i —*rlgf) starting from the integral equation (84c)
Specifically, in (84c)

v e e

(188a)

using (86). Thus one infers

@SG) g&f‘g {G U\)VQGIZ( )[ \/ @,(4-) +V "Y(+)]+etc }

23 —23% 31 7 3

+ +) +) (+)
{GF |ZG|Z }{V G (v ¥ V ) V3163| 23+ V'Z)]@ +C

(188b)
where, as always, A = E + ie. But in (188b)
i {6,V [ W B }}
= iy VL
E%O { \2, ‘2. F{v /L'E‘ 3‘]} (1898)

v, [0+ 8] - g
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d(+
Therefore, comparing with Egqs. (161) - (162), <I>:.L ) is given by the

+)

terms involving ‘i’i in (188b). Correspondingly, using the defining

—d ,
Eq. (165a) for T (k. + ko),

'T'ddg.ﬁ AL V 6(+)[ VLG (Vo+V, )+ V G"”(Vzgrvu\]’?—ﬁ:ﬂei'c.

23 23 3 3i

- BTGB I+ et

(189b)

The right side of (189b) is seen to be identical with the [slightly

rearranged] right side of (184b).
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5.2.2 Double Scattering §-Function Terms

In this subsection I show that the amplitudes T2k, + k.) of (176a)
~i  ~f

also obey detailed balancing, i.e., that

T (lR _9/& ) = "T’a(_)e _5__)&> (190a)

In particular, I shall prove

(/lei—ﬂe) ('k >k )

2&2 1223 (190b)

which is sufficient to demonstrate (190a) [recall the analogous case of
(180)]. It will be presumed (in the remainder of this subsection)
that for any given}c'i the finangf

momentum conservation. These restrictions on_,lsf are convenient, as will

are chosen consistent with energy and

be seen; Ef can be so restricted because-~for the purposes of this section
5.2--detailed balancing nead not be investigated for values of,giagf
which cannot occur in actual collisions.

Referring to (176b), the left side of (190b) can be written in the

form
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To(kok) - _f__u B><.,,“Le,§s<k )5k, a>}

w2ﬁi u
> L<)R25f zaf

> % ) (191a)

where we have used

sl fe] = Z

g(x Xy (191b)

T4 (.x’v)

summed over all roots x, satisfying f(xr) = 0, Similarly, from Egs.

(171b) and (176c),

‘223()2% {@%) »2}42 <~sz+t > <

%.("’3>

AR}
! ( ."C (192a)
28~y ~ 330
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where

0
i
X

+
3
Ot

=

(192b)

A
Do=_" K + K
W, +m,

When k -k, respectively, Eq. (192b)

£~
D are replaced by -B, -A respectively, where A, ,I},

lf,f are replaced by =k
implies that g
again are the vectors defined in (17la). Therefore

T (“3{} -k )

1228 AL

1-2—%1‘-_3 Em!wmi ﬁ><§l } Rss 6("? ) (193)

Now, as explained at the very beginﬁing of this section, we know that
r
the matrix elements of the two-body lopeit'altors 512 i° 523f do obey
detailed balancing, i.e., for any two vectors %X (whether on the energy-

momentum shell or not)

<2§ 5‘9121‘Z> N <“\~/ E§1218”%> o

and similarly for t

Eoage Eq. (194a) can be proved, e.g., by noting that
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Eq. (108) and the definition (131f) of t,, imply-g , is a symmetric E

w12
operator in the coordinate representation,
t (r -T'»)\)-.-’(’,( )
~MI2Y A1) A0 MR ~Q_) N|1))‘ (194b)

whereat (194a) follows immediately, recalling the fundamental defining

relation (13le) for the matrix elements of tqpe
Comparing Eq. (191a) with Eq. (193), and employing (194a), we see

that Eq. (190b) will hold if

/M 8(4? "'A ) /Uz B) (195a)

i.e., if

2 2 2.
2t - A = 4%_3{. - B* (195b)

/U“\z /U\n_ /"23 /U‘za

But using Eqs. (178a) - (178b), we see that (195b) reduces to the relation
(178¢c) required by conservation of energy and momentum. Therefore (195b)
does hold--and the detailed balancing relations (190) are satisfied--for

Ei’kf on the energy-momentum shell, Q.E.D.
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5.2.3 Residual Terms

I now return to Ttgbi *-k¥) of (175a); in particular I mow shall
investigate the detailed balancing properties of the residual terms
=t . . .
T 2312(ki - kf), etc:, not examined in subsection 5.2.1. 1If we dignore
convergence questions casting doubt on the legitimacy of interchange of

order of integration and limit ¢ » 0, then--according to Egqs. (137)--

the integral (170a) is

T )\ V,, 8k

234

= —«i’ym/l?; k)] T (EM@)G (E+l€)T (E*’W)@; (/éz,)

where wi(bi)’ wf(kf) are respectively the initial and final plane wave
states wi’ wf we have been employing throughout, defined by Eqs. (2la)
and (100c). The time-reversed matrix element 1n'?s(—vgf > _451)
corresponding to (196a) would be [referring to (169c) and using the
notation of Eqs. (181) - (182)]

TRV, B0

e~ oM ”{3)

.-:.,.E&)T 4}':(. ,V,Z(E‘HE)G (Eﬁ&)T (E-H&)/LP' (— F> (196b)

via manipulations as in Eqs. (137). But, as in Egqs. (183),
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VR = F (k)
CACNIERACN

Moreover, the fundamental definition (77a) implies the three-body Ilz-—

like the purely two-~body 212 in (194b)--is a symmetric operator in the

coordinate representation. Consequently, granting the validity of Egs.

(196),

= ¥ T+ Tl S
/q{z?»f (’%4) \/23 éiz (ki) - 'af\; HEL)V ¢ )(— %4‘)

12 2% (198)

Section E.4 in essence shows that

Y2

TGV, B k)= T, (hok )+ T (bR

where the quantities on the right side of (199a) are given by Eqs. (175b)

and (176b). Similarly,

T ¥ =@ —t =a
?mc 42 \/‘2@23 HE*?) i T\na(—\'%?'ke)ﬂ ck>-k) amy

023" §
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Comparison of Eqs. (199a) - (199b), together with Eqs. (190b) and (198),
now implies the desired reciprocity relation (180b) which--along with
the already proved (180a)--is sufficient to guarantee (179b), as explained
at the beginning of section 5.2.

The foregoing demonstration that Ttggi > Ef) obeys (179b) is merely
suggestive rather than compelling, for the following two reasons. First,
the interchange of order of integration and limit € -+ 0 leading to the
()%, 5 )

23f 23%12

for reasons amply discussed in this and earlier chapters. Second, even

symmetric expression (196a) for ¥ really is not justified,
if the validity of Eqs. (196) is granted, it is not clear that the
specific formulas (175b) and (175c¢c) are consistent with detailed
balancing, because these formulas were derived via some mathematically
questionable manipulaﬁions, e.g., the use of Eqs. (173) to reinterpret

the divergent integrals in (172a). What is required, therefore, is a
proof that Eqs. (175b) - (175¢) as they stand satisfy (180b). This

proof I now proceed to give. |

Recalling Eqs. (192) - (194), it is seen that Eq. (175¢) yields
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In (200a) it has been convenient to rewrite (175¢) and its analogues
in a fashion that trivially eliminates the §-functions under the integral;
as in (175¢), the integral in (200a) is convergent provided the
quantity within the braces is treated as a singler§23—dependent function.

It is further cqnvenient to rewrite (200a) as

R—>-%.)

|223(“ ~
km>[*§3(”£23f3 858,

=(Alt,
il iag 71”
/uz'-ikkza{ 'tzaf-i \?23;-VB> <‘e,_3{,| 34 !g’zgf\’g)}
2 | B(k,a B) B(Ryart B) (200b)

where
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Rewriting (175b) in the same way, we obtain
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With the aid of (131f) and the two-particle analogue of (63a), Eq.

(73b) takes the form
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where WlZi is defined by (74a), and
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(202a)

(202b)

(202¢)

(2024)



226

Then from (201b) we see
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But, by our usual rule (section A.8), interchange of order of integration
and limit € + 0 is permissible in (203a), because the integral (201b) is

convergent fexcept at A = % klZi]' Hence
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where now each of the terms inside the braces in (203b) are individually
convergent integrals.

Using the expansion

30;(:{:\23 Is;.,:’ I)‘)
g Xd%e ohi e »
(Zﬂ')% HWhy - A

Zpyy

the integrals (203b) vyield
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Hence, evaluating the limit € -~ O in (204a), we obtain finally
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The result (205b) is well-defined and finite at all values of A klZi

such that A # £ k In fact, (205b) is finite even at A = kl

12i° 217
where the integral (201b) [from which we deduced (205b)] diverges--

provided it is understood that the wvalues of F12 at A = ¢ klZi are

given by the limits of (205b) as A » % klZi’ namely

lz(lgIZL klzt“ﬁ)tllt)_Ax“;;:\ﬁ’| zi:;?» <k “ﬁl”lll ~!2‘\) (205¢)
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Eqs. (205¢) - (205d) are consistent with each other, in the sense that
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changing vy tO N, in (205c) gives (2054d).

Combining Eqs. (205b) and (201) leads to

=t
Tzaiz( {@L? /"3-’,1>
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£ A*

(206)
‘ZL

2

2
valid at A # k12i .

Eq. (206), which has been deduced from (175b),
obviously is a generally more convenient and more readily interpretable
formula for T (k, > k.) than is (175b) itself. Similarly, Eq. (200c)

leads to

Kalk
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which--when combined with Eqs. (200)~-yields
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valid at B~ # k23f .
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Using Eqs. (194a) and (195b), we now see that Eqs. (206) and (208)

indeed are consistent with the detailed balancing relation (180b), Q.E.D.

I further note that according to Eq. (173b) [or, better, Eq. (E49b) in

-1

section E.4], the term involving (k - A) ~ in (175b) should be

123
dropped at A = klZi; correspondingly, the term in (175b) involving

(k + A)—l should be dropped when A = - k If these strictures

121 124°
are included in Eq. (20la), and then combined with Eqs. (205¢) - (205d),

we see that Eq. (206) should be supplemented by
T (k>%) =0
2312\ ~L T A (209a)

at A" = klZiz' Similarly Eq. (208) is supplemented by

__>_.\g_> = 0 (209b)

2 2
at B" = k23f » again consistent with detailed balancing. For completeness,

I also note that Eq. (175¢) reduces to

kak)

233\(

= -2M3 (k Raae | Toae | DYC 12| Raii) (210a)
* C* - R

2 2
at C" # k,,.", supplemented by
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- (210b)
T2,33\ ( AL = )E-9> =0
at C2 = kBliz’

I close this subsection with two remarks. First-~because our
conclusion that the detailed balancing relation (180b) is satisfied rests
so heavily on the result (205b)--in Appendix A.10 I deduce Eq. (205b)
from Eq. (201b) by a method which avoids the [made to seem reasonable,
but not really proved in section A.8] interchange (203a) - (203b) of
order of integration and limit € - O; this alternative derivation
confirms the conclusions of the present subsection and provides further
evidence that our claims and arguments in section A.8 really are
correct. Second, it readily can be verified that Eqs. (175b) -~ (175c¢)
would not be consistent with (180b) if the contributions (173a) to the

singular integrals in (172a) had been omitted.
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5.3 Momentum Space Procedures

The iterations which have been employed in this work on numerous
occasions--to obtain, e.g., Eqs. (64) or (162)--clearly are independent
of representation, i.e., equally well could have been performed in
momentum space. Moreover, relations such as Eqs. (63), (81) and the
three-particle analogue of (131h) ultimately make it possible to express

+)

all iterations of the scattered wave @i --or of various contributions

S s(+)

to o, such as ¢
i ofB

with GF(+) [that is to say, expressions whose leftmost factor is GF

of Eqs. (161)--in terms of expressions beginning
(+) ]

and whose rightmost factor is wi' In addition, as Eq, (96) argues and

(+)
F

*
as r >~ @ is proportional to Y. (5') defined by (100c). Therefore,
N €

Egs. (90) make explicit, it is the case that the limit of G (£;£';E)
granting that the variety of possible iterations must lead to self-
consistent results provided questiomns concerning convergence and interchanging
orders of integration can be ignored, it really is not suprising that the
transition amplitude matrix elements obtained from our configuration
space approach agree formally with the corresponding matrix elements in
the more customary momentum space procedures.

Thus, for example, it is no surprise that Eqs. (187) take the form
they do. In the discussion of Egs. (165) - (166) we have argued that
Td(E > Ef) defined by Eq. (165b) represents the contribution to
T(ki - gf) resulting from scattering processes involving three or more
successive purely two-body collisions. Hence Eq. (187b) merely states
that < £|T|i > consists of Td(gi + k.) plus the contributions < fL?aBIi >
from individual purely two-body collisions, plus the contributions
- < fLEaBanyéli > from all possible pairs of successive purely two-body
collisions; that the minus signs in (187b) preceding the double scattering

matrix elements are consistent with this interpretation follows from
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Eqs. (133b) and (137). 1In the text I have given a long-winded derivation

of (187a) [which except for its explicit inclusion of the limit ¢ -~ 0

is the same as (187b)] only because I have insisted: (i) on starting
from an expression (165b) for nggi *'gf) composed solely of convergent
integrals, and (ii) on employing no mathematically illegitimate
manipulations in going from (165b) to (187a). If I am willing to employ
mathematically questionable operations, Eq. (187b) can be derived more
readily than was (187a). Specifically, start from Eq. (131d), which with
the aid of Eqs. (63) can be rewritten in the form [once again simplifying

the notation by dropping the bars]
¥ *
Y1, = A (V-vev)y;
= /l.p;* V -V [G\'Z -G (Vz3+-\/3|)612]\/|2
-V [st" G (V3,+ Viz)623] v23 (211a)

-V [63 ~6 (ylz+ V23> GSJV& /Lpl

>
= A'Pj\: V- V 6‘2\/‘2 '(st+vsn>@tzv

+ V6 (V, +V. )6,V, —V,.6,,V

23 3 23 23 23

Vg +V,)6,, VL, + VE(V,r )23 s

—V3‘C~»3|V3‘ - (v|>_+ V23>G3‘V

+\/G\/+v )3\5/11),1

(211b)
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Next, employ Eqs. (60) and (77a), which reduce (211b) to

CTA = A7 (Tt T T
A (Ve ) éf:_)
AT Ve Ve V) B -
- A VeVt V) B

and then use (100b), which converts (21lc) to

W;T/qf‘ /qf' (~|2 ~2.3+1_3‘>/LP:L"
H [(Vza 3; @U (Vs\ sz) ém (2114)

+ (V%) 32 ]

—)*
The wf( M* terms in (211d) are precisely Ts(hi + k;) of (133b); Egs.

(137) and (169¢) have shown

.___.T \S \S { G +T G T (211e)

23 PM?. ~2, F 5\ ~31 Fa23

+T,.8, T +T 6T, +T 6T 2%

FArlz ~02 F Ay F A3

Eqs. (211d) - (21le) yield Eq. (187b).
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5.3.1 Diagrammatic Techniques

The above derivation of (187b)-=as well as the derivation of (187a)
in subsection 5.2.l-—can be paralleled step by step in the momentum
representation. Alternatively, one can obtain a quite direct and simple

demonstration of (187b) via diagrammatic techniques(4’5’8).

Although
it really isn't necessary to do so--we already have two independent
derivations of Eq. (187b)--for completeness sake I shall give this
diagrammatic dexivation. It is convenient first to introduce as
propagators the negatives of the Green's functions we have been using;
in this section these negatives will be denoted by the carat, i.e.,

FA

PA)
G=-6, 0=

N
b, = /\v/uz + \/23\2\/

~2 ) 12 (212a)

- GF’é%z = - g;,, ete, Then Eq. (131f) becomes

Correspondingly, the two-particle analogue of Eqs. (8l) is

A

_ 4 5V &
92 ° 3;:: T 3 V29, (212b)

Using (212b) to iterate (212a) yields

A Ay A
-Ef =>{ + V. 9 Vot vzas"—’viz,as:vQ+ o (212¢)

12 |

wherein all terms are of positive sign [the reason for introducing these
carated propagators in place of our former gF’ g12]° Taking matrix

elements of (212c¢),

(2124)
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Eq. (212d) can be represented diagrammatically by

where the rules for constructing the matrix element counterpart to any
individual diagram on the right side of (213) are obvious; it omly is
necessary to remember that between any pair of succegsive vertical

lines connecting l‘and 2 the particles propagate freely, i.e.,. in each
matrix element the free particle propagator gF separates successive
interactions V12' Placing the initial state on the right and the final
state on the left, as in the matrix elements (212d) themselves, minimizes
possible confusion in interpreting the diagrams; in other words, we
suppose the system evolves from right to left as indicated by the arrows.
The bubble diagram on the left denotes the sum of the diagrams on the
right; equivalently, the bubble diagram denotes the matrix element of
L12(ry03E5, ") itself.

Similarly, in the three-particle system [again dropping the bars] where

T - V + V&V (2142)

N

using
A A A A
G = G+ & V6
= (214b)

obviously leads to
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A

=V +V +V +VGv FV GV,

A/ ~l2 ~23

(214c)
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+VG\/GVGV 6 V.GY GV EV+ -

F I12°F 12°F 28 °F 3| FIZTF 23 F 12

That is to say, every possible sequence (with repeats) of the three
interactions VlZ’ V23, V31 occurs in the iteration of T. Correspondingly

we have the diagrammatic representation

—] | ——s—] [ |
2+ o0—~—T—=24 2 2
————3 B3 3 3
I I - | | |
+ 2—= 24 Qw2 v 42 2+
l J—
+ 2= - g - 4+ (215)
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where the super-bubble in (215) denotes < fLIIi >, and where on the right
side of (215) there occurs every possible diagram constructed from
succegsive vertical lines VlZ’ V23 or V31 connecting palrs of the
horizontal lines 1, 2, 3. Actually (215) has been drawn so that the
individual diagrams therein are the counterparts of the particular terms
included in (214c).

Now consider the first diagram on the right side of (215), representing
the matrix element < flVlzli >, Evidently this diagram is the first in
a whole sequence of diagrams on the right side of (215), each of which
is composed solely of interactions V12‘ In other words, on the right

side of (215) I can single out the sum of diagrams

| ———— !
(216a)
e S S 3 -

where the bubble on the right side of (216a) now denotes the matrix
& ‘
element wf«312wi° This bubble must be identified with the matrix

element of the three-particle I.,, of Eq. (77a)~-rather than with the

12

two-particle t., of Eqs. (131f) and the bubble in (213)--because in (214a)

12
Xlz(g;g') is proportional to the three-particle Ggg - ') of Eq. (27e),
rather than merely to the two-particle 6(512 - 512') of Eq. (131f);
correspondingly, the matrix element counterparts of the diagrams in
(216a) involve the three-particle free space propagator‘ﬁ} = "GF we
have used throughout, and are taken between the three-particle plane

wave states wf, wi of Eqs. (100c), (2la) respectively.
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Next consider, e.g., the fourth diagram on the right side of (215).
Then on the right side of (215) I first can single out the sum of

diagrams

A

+ + + - 2
(216b)
I 3 <
followed by the sum of sums
!
27 + -+ +o 22
it 3 i
(216¢)

®
The diagram on the right side of (216c) obviously denotes a wf 2236%212wi

contribution to the overall sum on the right side of (216a). Similarly,
starting with the last diagram (I'll call it D) on the right side of
(215), I first sum those diagrams which repeat the rightmost interaction
V12’ obtaining a sum represented by a diagram identical with D, except

on the right. Next I sum the sums in which T

that T., replaces V

12 12 12
has replaced V12 on the right side of D, but in which the interaction

V23 immediately to the left ofs12 is repeated. Evidently, proceeding in

this fashion, I single out in (215) a collection of diagrams associated

with D whose sum represents the matrix element
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It is now apparent that (215) yields

/LP; 1 /LP— {;vn. ~23 I3s+1~2.36\=_}:\2

A A A
W2?.3615 ~3) + -“[-3}6 23 + E;GF—L—\L (217a)
d
+1'D_GF'§3| Y1 GF 23}@5{ +T(k %b{;)

where Eﬁ can be thought to consist of all matrix elements corresponding

to n > 3 successive two-body scatterings, i.e.,

T(Rik,) = Alﬁc{ T8 T,

A

G TA A AT_\_. (217b)
+ T 8T 6T+ +1 6T6. 16 J/L{J'i

~23 F ~23 ~23 Frip FA3ITF~23

Replacing 6} in Egqs. (217) by —GF, and recalling Eqs. (165b) - (166b),

we see that Eq. (217a), signs and all, is identical with (the laboratory

frame version of) Eq (187b).
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5.3.2 Single and Double Scattering Diagrams

Thus far this section 5.3 has made it clear that our configuration
space expressions for < f|E|i > = T(gi +~§f) agree formally with expressions
for < flili > derived via momentum space procedures, and that they should
be expected to manifest such agreement. On the other hand, this assertion--
important though it is--does not of itself imply that reaction rates
computed using our configuration space expressions necessarily will agree
with the results of reaction rate computations using momentum space
expressions. In the first place, the whole possibility of demonstrating
a correspondence between configuration space and momentum space formulations
depends on being able to interéhange order of integration and 1limit E >

= () 5 ()
i i

in various integral expressions for ¢ or parts of ¢ , as discussed

in chapter 4; without this interchange, the configuration space results

for probability current flow cannot be expressed in terms of matrix

- e - (<)% -
elements [such as Ve Vyi(+)’ Wf( ) V23¢125(+)

identifiable with momentum space matrix elements composing all or part of

, etc.] ultimately

< fL@[i >. Moreover, the aforementioned formal agreement between the
configuration space and momentum space expressions for < flili > has been
established without regard to the poséible influences of manipulations
such as: (i) interchange of orders of integration, (ii) interchange

of order of integration and limit € + 0 in < fl?(E + ie)|i >, and (iii)
Fourier transformation, i.e., transformation from the coordinate to
momentum representations. Such manipulations, if not legitimate, can
produce differences in the numerical values of matrix elements which are
formally identical, and strict proofs of legitimacy are hard to come by;
in fact, it already has been pointed out--in connection with Eqs. (51lc),

(51d) and (131d)--that the relations
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(218)

e X\ T T T s . mX=,
/qy'F V/@L T—-_ﬂﬂ*l(E)/{‘)}:?gy;ﬂﬁI(Eﬂe)qfi

need not hold. However, as so often argued in this work, it is reasonable
to assume that manipulations which at no step involve divergences indeed
are justified.

Let me now assess the significance of Eq. (187b) in the light of
the above remarks. The discussion of Eq. (165a) has explained that the
interchange of order of integration and limit ji-+ o yielding (165b) is
justified, except possibly along an inconsequential set of special'§f.
Correspondingly, Td(ki > hf) is composed of convergent integrals, except
Possibly along an inconsequential set of special'gf; moreover, because
the integrals in (165b) are convergent, manipulations such as those in
Eq. (166b) are legitimate. It follows that the quantity Td(ki > Ef)“
here defined as the contribution to Tt§§i > Ef) or T(Bi +‘5f) associated
with n > 3 successive two-body scatterings—--should yield the same values
whether computed in momentum space or in configuration space [except
possible along an inconsequential set of special kf]. As it happens it
is the carefully proved Eq. (187a)--rather than (187b)--which provides
the mathematical statement of the immediately preceding assertion
concerning Td(§i -+ Ef)’ because in momentum space the scattering matrix
elements comprised in < fli(ﬁ)li > customarily are computed from the limit
e > 0 of the corresponding matrix elements in < f|§£ﬁ + ie)|i >. To put
it differently, in the momentum space formalism the contributions to the
total scattering amplitude T(gi +,5f) made by e.g., the diagrams on the

right sides of Eqs. (216a), (216c) are respectively
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T (k. -»42 D <HT (E+ie)|2) e

L

Tolkrky) = Jim (| LB R EITLEO)

where it is understood of course that for physically observable amplitudes
E = Ei = Ef. The relations (219) define the momentum space scattering

amplitudes whether or not it is true that the corresponding relations

A (F TR Er))={ Ty o

and

A -<{— \ :T:‘23(§ +ia)§F(E+ie)j:‘Z(E +ie)) /L>

€20
(220b)

I

- ST EECE T, B >

[involving interchange of order of integration and limit € + 0] hold

when these matrix elements are computed in the momentum representation.
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In view of the foregoing, differences between configuration space
and momentum space reaction rate predictions can stem only from the
behavior of matrix elements representing single or double scattering,
i.e., from matrix elements of the types written down in Egs. (219) and
(220); in the remainder of this section, therefore, we confine our
attention to single and double scattering contributions to the scattering
amplitude. For either of these types of scattering processes it was less
obvious initially than in the .case of n > 3 scattering processes that
there would be a close agreement between configuration space and momentum
space results, because for integral expressions representing those parts

of ®1(+)

associated with n = 1 and n = 2 scattering processes interchange
of order of integration and limit r + « is not justified [recall chapter
4]; correspondingly, when for these n = 1 and n = 2 processes this
unjustified interchange of order of integration and limit r - « was
performed, the configuration space matrix elements obtained were divergent,
implying that the [seemingly required for agreement between configuration
space and momentum space predictions] manipulations (i) - (iii) listed in
the opening paragraph of this subsection would have dubious wvalidity.
Nevertheless the momentum space and configuration space results for single
and double scattering processes gratifyingly turn out to be essentially
identical, as is detailed below.

Consider first the typical single scattering process represented by
the diagram (216a), whose contribution to the scattering amplitude is

computed in momentum space via Eq. (219a). By definition [recalling also

Eqs. (33b), (40b) and (77a)]
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Also, using the center of mass analogue of Eq. (D3) in section D.1 below,

the second integral involving 512 in (221a) becomes
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(221c)

Thus,

(il - BTSN b Ef)

Mt

so that, from (219a), the momentum space contribution to ngi - kf) made

by the diagram (216a) is

7

2

-:()Ei%}gf (ZT) 8('\42{ ~tzt)<-H o m)! >

(222b)

where the matrix elements on the right sides of (222) are defined as in
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Eq. (131e). Obviously Eq. (222b) is identical with Eq. (130c), recalling

that the left side of Eq. (130a) is the matrix element for le(k >

ke)
in configuration space.

Next consider the typical double scattering process represented by

the diagram (216c). Computed in momentum space the matrix element on the

right side of (219b) is, by definition

; | A, Ak AR K, BT (Brie) k) (kG E o)

X <‘5 ‘j:l(g«;*"e)%»

(Bn)

(223a)

where the matrix elements Of-EaB are given by Egqs. (221) - (222), and

where--again by definition

= =t T¥_ P e = N
“'Jdi Z:’U{(I;.,)G;:(T;I) .Eﬁw)%kz';&’) (223b)

Using the expansion

6.(7,%,E+e) =
T —E;-i¢
1 ["’Q ~)2~!1)+Nl7_(~|2. *'1)]

A A
dids,
@n) R L HRY _E -t (2242)
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Eq. (223b) becomes

(R |Ge(Brie)| k"

1
HRy WK, _E-ie
24/“\2, 23

- (Om) S(%e o )8(K, - X

~i2 ""’ll) (224b)

Inserting (224b) and (222a) into (223a) yields
(F1 I"Zs(E.L+1.8)GF(Ei+18)I!2(Ei-%-ia)l'L >

=Sd)g-|zd &26(5«23; >8(K

~23 !2. M’l'ZL)

2

X < 2.3%‘”7-3(% hzaf_‘,mg)l 23><""i2l"'m m*‘c l~!2t>

E(R) "Ei -

(225)

which can be seen to be equivalent to the result quoted on p. 59 of

Watson and Nuttall(z‘). In Eq. (225), ‘E(}g) is given by either the 1, 2 or the

2, 3 analogues of (35), as one chooses. Hence, because of the 6(}512 - K

~12i)

factor in the integrand, the denominator in (225) can be written as

E(k)-E.-ie = FRo _#hu ;g
2/1!2 Zf*n. (226a)
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Also, from (29d)

~ 23 A2 (226b)
rmzj— m
= m,
/E " w23 -+ |/§I2_ (226¢)
’/ m +m,

Eq. (226c) further implies that (for fixed 512) dklZ = d§23, i.e., in

Eq. (225)

dk dK = dk dK

Using (226d), the integrations in (225) are immediately performed, with

the quantities k23, being given by Eqs. (226b), (226c) respectively

after making the replacements K23 23f’ 12 ='312i° Recalling Egs.

(171a), we now see that Eqs. (219b) and (225) imply the momentum space

amplitude
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k)

23!2( ~y g

= - fim CRrae |1 23;+i€)‘”§> (A [ (Bpried) Ry, > @D

E>0
"hl \2«.

Z/u 2 Z/A\L

~-1E.

For A? # k1212’ the limit in (227) can be performed immediately, and

cbviously yields

:ra;z({%.-» '{%.f_) = . 2Mn < 23{“22.3+I B><A ‘~.2le\zi> (228a)
s AT — R

Rt

For A2 = klZiz’ the limit € -+ 0 in (227) doesn't really exist, but in

(42)

momentum space procedures it is customary to make the interpretation

e
1

ATD(w) + P L (228b)
w0

where P again signifies the principal part (after integration). According

2 _ . 2

to (228b), at A k1Zi » Eq. (227) should yield
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—

T; (k '>4Q )— -_%_(kﬂflﬂ-af' B><A‘~m ~m.>%A km_ (228¢)

The right sides of Eqs. (228a) and (206) are identical; the right sides
of Eqs. (228¢) and (191a) are identical. Therefore, recalling also Eq.
(209b), we see that Eqs. (228a) and (228¢) taken together show the

momentum space T2312Q§i - Bf) is identical with the configuration space

Tzs‘z( N%) 23\2 {>+ 23‘1 M >k > (229)

for all A2, where the configuration space amplitudes on the right side

of (229) are given by Eqs. (175b) and (176b).
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5.3.3 O0ff-Shell Double Scattering

Section 4.2 makes it obwious that--whether arrived at via momentum
space procedures or via the configuration space approach of section 4.1--
the single scattering transition amplitude of (222a) or (130c) must not
be included in Ttgki -+ Ef). In other words, there is complete agreement
between the configuration space and momentum space single scattering
contributions to the total transition operator T and to its true three-
body part IF, For double scattering processes the preceding paragraph
has shown that the momentum space and configuration space contributions
to the totalji are the same; however, the momentum space considerations,
e.g., the diagrammatic derivation of (216c¢) in subsection 5.3.1, do not
very convincingly indicate what part of T2312€51 +4§f) should be included
in Tt(ki +.Ef)’ Again, section 4.2 makes it obvious that--whether arrived

at via momentum space procedures or via the configuration space approach
2

. 2
2312y > kp) at A =k,
must be excluded from Tt(ki ﬁ'kf); otherwise the inferred three-body

4/3

of section 4.1--the quantity (228¢) giving T

elastic scattering rate will have an anomalous Tt dependence on the volume

| 2 2
3 —
2312k ~ kg) at A # ks

should or should not be excluded from Tt(ki > kf)9 it seems necessary to
P wA

T. But to decide whether (228a)--the value of T

fall back on our configuration space arguments.

Actually, once (175b) has beenAreduced to (206), the conclusion
that it indeed represents a contribution to Ef~-i.e,w the conclusion
that (228a) should not be excluded from‘ng—apparently can be inferred
merely from the rules at the end of subsection 4.1.3. Along most
in the nine-dimensional counfiguration space, the scattered

£
+ . =5/2,
part ¢, (E) decreases asymptotically like p ; these are the

directions v

directions corresponding io those‘}gf for which the experimentalist
expects to count truly three-body scattering events. Correspuadingly,

in general the allowed k

ke for given ki form g five-dimensional manifold
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[conservation of total momentum and total energy imposes four conditions
on the otherwise arbitrary nine numbers specifying,klf, BZf’ k3f], Now

N

for specified bi’ Ef, the quantities A, B are uniquely determined by
Eqs. (171a), without imposition of any additional conditions; therefore,
for physically allowed‘lif consistent with given Ei’ the double scattering
processes whose contributions are evaluated by (228a) are associated

with the full five-dimensional manifold of finalﬁgf. Consequently, in
general (228a) represents a contribution to 52312<hi 4-5f) along directions
va corresponding to truly three-particle scattering; i.e., in general
(228a) should be included in EF. Because of Eqs. (177), the result (228a)
can be interpreted as resulting from a pair of successive purely two-body
scatterings, each of which conserves momentum but not energy [though of
course conservation of total energy in the overall transition from.}gi *-kf
is guaranteed, Because‘gf is presumed to lie on the total emergy shelll].
The extra condition that energy shall be conserved in the individual two-
body scattering events can be satisfied only on a four-dimensional
manifold of final directionsygf, along which section E.3 shows @i(+)€£)
decreases asymptotically as p_z [consistent with the fact that a

2

§(A” - k1212) factor turns up in (228c)]; consequently the double

scattering contributions (228a) along directions A2 = klZiz should be

excluded from Tt.

The factor (A2 - k1212)—1 in the right side of (206) means that
G(Ei > k) of Eq. (3) will diverge when integrated over all final k.
2

consistent with A2 #k This zesult, for the elastic scattering processes

121 °
here being discussed, can be interpreted along the lines of subsection
4.2.,2. Although the diagram (216c) corresponds to a pair of purely two-
body scatterings, nevertheless this diagram's off-shell contributions

(206) or (228a) cannot occur unless all three particles smmehow simultaneously

interact; if particle 3 is infinitely far from the pair 1, 2, then the
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pair 1, 2 can only make a collision which conserves energy as well as
momentum. To put it differently, after the first collision in (216c)
the particles 1, 2 are in a state which lasts only a time At until

particle 2 collides with 3. The magnitude of At is given by

At A~ X

e ——————

/ (230a)
qj;L

where X is the distance traveled by particle 2 between-its collisions with
Ak, "

1 and with 3, and gz' - is the velocity of particle 2 after its

m
2
first collision. But the magnitude AE of the departure from energy

conservation in the intermediate state is

AE -_:j:(}\l'_- \Q:) ~ h (230b)
24, AT

yielding

X A~ Thay (230¢)
ANE

Now, as in subsection 4.2,2, suppose the volume T contains precisely
one particle of each species 1, 2, 3. The rate of double scatterings in
which a collision between 1, 2 is followed by a collision between 2, 3

during the time for particle 2 to travel a distance X is [compare Eq.

(159a) ]

~ A5 !X @’23\ > (2312)
<‘ g \ T av

Therefore the rate of double scatterings in which the scattering between
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2, 3 takes place after particle 2 has traveled a distance between X and

X + dX is

(%) —
A AT rs 0§ X (231b)
v T oy

But, from (230c¢c),
dX ~ 'h’lfé o%(AE}, (231c)

so that, still with one particle of each species in 1, the rate of double
scatterings in which energy conservation in the intermediate state fails

by an amount between AE and AE + d(AE) is [using (152b)]

<L?r,§.‘? G\ d (aE)
T v ~ (AE)?" (2322)

e

At
/UO"'AE(\,Z)' 25)

G, G,, d(AE)
T* (A

(232b)

where C' here is independent of the shape of the scattering region T, and

.

” represents an average [over scattering directions and velocities] of the

various primarily wvelocity-dependent factorxs in (232a) not explicitly
included in (232b). The corresponding rate with‘ﬁ& particles of each

species in 1 is
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A CAA A A
A (12523)2 NN N, 45
OE a3

HE

(12,23) N NN ’t‘C (%% d(ag) @320
(AE)*

i
Except for the factor {, the result (232c) has precisely the form obtained
- 2 .
when the contribution ITt2312(ki *‘k )|© from (206) is substituted into Egs.
lt >|2, and that

(2}~ (3), remembering that 6., is proportional to | < fI

12 121
dklfdszdk3f in (3) can be reexpressed in terms of d(AE) and other
k-dependent differentials. The fact that (232¢) is proportional to T once
again indicates that the expression (206) must be included in the
physical three-body scattering amplitude.

I beliewe the above qualitative largely geometrical argument is basically

(45)

consistent with the arguments of Iagolnitzer , who has examined the
interpretability of a propagator pole in the scattering amplitude. He
finds that the pole can be understood to represent a pair of successive
real iwo-body collisions, but his analysis holds only in the limit that
the distance X between the collisions is very large. It is to be noted
that the geometrical argument in this subsection differs in one important
aspect from those given in chapter 4; in chapter 4 it always was presumed
that each individual collision under discussion [e.g., the individual
two-body processes: censidered in the derivation of (159a)] was an actually
Occurring event, i.e., was consistent with energy and momentum conservation.
Finally, I close this--the last section of the main text--with the remark
that despite the consisteney and interpretability of our result (206)

for the contribution to:I‘:t made by double scattering processes, it still
would be desirable to confirm our conclusions via a configuration space
calculation of Tt2312(§i »—bf) which somehow avoids having to reinterpret

singular integrals, as we were unable to avoid doing in deriving Eqs. (175).



